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DISLOCATION AND RATE-PROCESS THEORIES
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SUMMARY

An eguation for the steady-state rate of creep has been
derived by applying the theory of dislocations to the creep of
pure metals. The form of this equation is in agreement with
empirical equationg describing creep rates. The theory was
also used to predict the dependence of steady-state rate of creep
on physical constants of the material and good agreement was
obtained with data in the literature for pure annealed metals.
The rate of creep was found to decrease with increasing modulus
of rgidity. This relation suggests that one of the requirements
for a heat-resisting alloy is that its matriz be a metal that has a
high modulus of rigidity and therefore a high modulus of
elasticity.

INTRODUCTION

The development of the gas-turbine engine as & power
plant for military aircraft has focused attention on the need
for heat-resisting alloys. One of the criterions used to
evaluate heat-resisting alloys is creep resistance, that is, the
resistance to plastic deformation over a period of time. Cur-
rent evaluation of creep resistance is accomplished by creep
tests in which creep curves (elongation plotted against time)
are obtained at constant stress and temperature. A typical
creep curve is shown in figure 1. The initial stage, in which
the slope of the curve or rate of creep is rapidly decreasing, is
commonly designated the primary or transient stage;
secondary or steady-state creep refers to the straight-line
portion of the creep curve. After a sufficient length of
time, the rate of creep increases in the region designated the
tertiary stage. In certain cases, the rate of creep con-
tinuously increases and cannot be divided into these three
stages (reference 1 (a)). The steady-state rate of creep is
generally the criterion by which the creep resistance of heat-
resisting alloys is expressed. Because this rate rapidly
increases with temperature, creep becomes an important
factor in limiting safe-operating teraperatures.

One of the first attempts to analyze steady-state creep by
other than empirical methods was made by Kanter (reference
2) in 1938. Further work of a fundamental nature was
carried out by Kauzmann (reference 3) who applied Eyring’s
theory of liquid flow, which is & special application of the
theory of rate processes, to the steady-state flow of metals.
The problem of creep has also been attacked by the use of
the theory of dislocations. A survey of results obtained
thus far by this approach is reported by Seitz and Read
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F16URE 1.—Typleal creep ourve showing three stages.

(reference 4). Although these three theortetical treatments
predict equations for the steady-state rate of creep that show
the correct dependence on stress and temperature, quanti-
tative predictions cannot be made from them as to how phy-
sical end structural constants of materials affect the creep
rate. . These treatments are therefore not of great value in
leading to the synthesis of new materials that will have better
creep properties than those currently used for heat-resisting
purposes.

In order to determine the dependence of steady-state creep
rate on the physical constants of materials, an investigation,
which continues & fundamental approach to the problem of
creep, was conducted at the NACA Cleveland laboratory
early in 1945. An equation for the steady-state rate of
creep as a function of applied stress and temperature is
derived by applying Eyring’s theory of rate processes and the
theory of dislocations to the problem. This investigation is
part of a program being conducted at the Cleveland labora-
tory to evaluate the physical properties of heat-resisting
alloys in terms of physical constants, which are either known
or easily measurable, in order to minimize the number of
tests as well as to make possible the prediction of new com-
positions and structures for better heat-resisting alloys then
those currently used.
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SYMBOLS

The following symbols are used in the theoretical analysis:
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distance between atoms in slip direction

interplanar spacing (fig. 4 (a))

modutus of elasticity

function of temperature and material

free energy of activation per molecule

fraction whose value is about 1/2

modulus of rigidity at any temperature

modulus of rigidity at absolute zero

heat of activation per molecule

Planck’s constant, 6.62 X 107 erg seconds

Boltzmann’s constant, 1.8 X 107 ergs per molecule
per °K

distance between imperfections in a single crystal (of
the order of I micron)

number of dislocations per unit area that intersect a
plane normal to the slip plane and containing the
glip direction

number of sources of dislocations per unit volume

ratio of sources of dislocations at which a positive
activated complex has formed to total number of
right-hand sources of dislocations; that is, proba-
bility of formation of a positive activated complex
at right-hand source

probability of formation of a negative activated com-
plex at right-hand source

—Fk log, p*

probability of occurrence of oscillation in crystallo-
graphic direction under consideration .

stress-concentration factor

rate of generation (number of dislocations generated/
sec for single generating source)

rate of generation of positive dislocations at right-
hand source

rate of generation of negatwe dislocations at right-
Land source

rate of reaction per unit concentration of reactants

entropy of activation per molecule

absolute temperature, °K

average time for activated complex to pass into
product form

tensile creep rate at steady-state conditions

ghear rate

volume associated with one atom

average velocity of motion of dislocations

elastic energy

energy to be attained by thermal motion

ratio of d; to d,

tempersature coefficient of modulus of rigidity

displacement shown in figure 5 (a)

Poisson’s ratio

externally applied tensile stress

shear stress

back stress

Te externally applied shear stress

T, average shear stress at sources of dislocations

T4 shear stress to be attained by thermal motions

70 critical local shear stress for generation of dislocation
THEORY

The features of the theory of rate processes and the theory
of dislocations required for the development of the creep
equation are first reviewed; the derivation of the equation
for the steady-state rate of creep is then derived.

EYRING’S THEORY OF RATE PROCESSES

The theory of rate processes (reference 5), as developed by
Eyring and others, considers a reaction or any rate process
to be the result of the crossing of & potential-energy barrier
by molecules whose energies have exceeded a certain mini-
mum value. The reaction consists of the formation of an
“activated complex” capable of crossing the barrier followed
by the passage of this complex over the barrier. (See fig. 2.)
The most important assumption is that the initial reactants
and activated complexes are always in equilibrium. Appli-
cation of thermodynamic and statistical mechanical consid-
erations shows that the number of activated complexes pass-
ing over the barrier per second (or rate of reaction) per unit
concentration of reactants is given by

r=

%Z’e—AFclkT (1)

L

The term kT/h can be regarded as the effective frequency
at which activated complexes cross the barrier; the exponen-
tial factor represents the probability of formation of an
activated complex. In the calculation of this probability
term, the contribution due to the translational degree of
freedom along the “reaction coordinate” (the most favorable
reaction path on the potential-energy surface) has bcen
disregarded because it is included in the factor kT/h. The
free energy of activation AF, is interpreted as an ordinary
free-energy term and can be expressed by

AF,=AH,—TAS, (2)

where the heat of activation per molecule A, is the height
of the potential-energy barrier in figure 2.

Activated
state

Potential enerqgy

Final sfate

Reaction coordinate

F1GURE 2—8chematie representation of potentlal barrier.
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GENERAL FEATURES OF DlSLOCA"i‘ION THEORY IN RELATION TO SLIP

The theory of dislocations arises in relation to the mecha-
nism of slip in single crystals of metal. Slip is the plastic
deformation that occurs in an arbitrary short period of time
when a metal is subjected to stress. This deformetion is
characterized by the displacement of one part of the crystal
lattice relative to another along a particular crystallographic
plane and in a definite crystallographic direction. These
slip planes and slip directions are detected by the occurrence
of slip bands, step-like discontinuities on the surface of single
crystals that have been subjected to stress. The spacings
of the bands are generally of the order of 1 micron (reference
1 (b)). For any given crystallographic plane, there is a
more or less critical value of the component of the applied
stress above which the rate of plastic deformation rapidly
increases. This value is called the critical shearing stress.
Early attempts to explain the mechanism of slip based upon
the assumption that the process consists in the sliding of
parallel planes over one another lead to theoretically de-
termined values of the critical shearing stresses, which were
approximately 1000 times too large. It therefore became
evident that the true nature of slip involves deviations from &
perfect lattice.

Of several mechanisms suggested, the one that has been
most successful in explaining the slip process is the theory of
dislocations. This theory, which was advanced by G. I.
Taylor (reference 6), Orowan (reference 7), and Polanyi
(reference 8), proposes that local deviations from & perfect
lattice celled dislocations exist in single crystals and that
movement of dislocations through the stressed crystal
produces slip. A dislocation consists of a stable arrange-
ment of atoms such that, in & region of a few atomic dis-
tances, 7 -+ 1 atoms in the slip direction face n atoms across
the slip plane. The point at which the atoms are one-half
an atomic spacing ‘“out of step” is called the center of the
dislocation. The extension of the dislocation in the slip
plane and normal to the slip direction is called the length of
the dislocation. '

A simplified model of a dislocation in which two neighbor-
ing planes are shown in cross section is presented in figure 3;
the plane of the figure is normal to the length of the disloca-
tion. A small shear stress applied as shown in figure 3 (a)
will cause a displacement of the center of the dislocation by
one atomic distance (fig. 3 (b)). The dislocation finally
passes completely out of the crystal and a perfect lattice is
restored, differing from the originel lattice in that one plane
has now been translated relative to the other by one atomic
distance. In the process just deseribed, the entire linear
dislocation must move as & unit.

Barrett (reference 9) presents a sketch taken from an
earlier work by Taylor (reference 6) showing the two types
of dislocation that can exist (fig. 4). If, in the neighborhood
of the center of the dislocation, more atoms are above the
slip plane, a positive dislocation oceurs and, if more atoms
are below, a negative dislocation occurs. For the same shear
stress, positive and negative dislocations move in opposite
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F1cUrE 3.—8chematic representation of displacement of twe planes by motlon of
a dislocation.

directions but the net result of the passage through the erys-
tal is the same, a translation of one part of the lattice with
respect to the other by one atomic distance (fig. 4).
Inasmuch as the passing of a dislocation out of the crystal
lattice results in the loss of the dislocation, new dislocations
must be generated in order for continuous plastic deformation
to be possible. A dymamic theory of dislocations is therefore
necessary and was developed by Orowan (reference 7) and
extended by others, including Seitz and Read (reference 4).
Because of the great energy required, the process of genera-
tion usuelly takes place at regions of high stress concentra-

tion resulting from imperfections in the single erystals. The

existence of such imperfections as a result of accidents of
growth during the formation of single erystals is generally
accepted but the nature of the flaws that exist is still a mat-
ter of controversy. For example, the theory that single
crystals are made up of a mosaic block structure is discussed

in reference 4. X-ray evidence indicates that the average”
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spacing of the imperfection is of the order of 1 micron. The

general dynamic picture obtained is as follows: Dislocations

(e) (f) (8) (h)

FIGTRE 4—QCeneration and movement of dislocation. In sketches (a), (b), (¢), and (@), &

positive dislocation moves to the right; in (), (f), (g), and ¢h), a negative dislocation moves =~ ™

to the left; the resulting deformation is identical. (Taylor.) (Reproduced from fig. 1 of
reference 9, . 335.)
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are generated under shear stress at the regions of high stress
concentration, which will be called sources of dislocations.
A source of dislocations will be called & right-hand source if
it generates dislocations to the right and a left-hand source
if it generates dislocations to the left. The dislocations as
they are generated are only a few atoms long because of the
extremely low probability of generating a full-length dis-
location (a dislocation the length of which is approximately
the spacing between imperfections) (reference 4). As the
dislocations move through the crystal under shear stress, they
inerease in length and move in the slip plane and slip direc-
tion until they become stuck at an imperfection or in the
vicinity of other dislocations.

Further properties of dislocations and their use to explain
the qualitative phenomena of plastic deformation are sum-
marized in a series of four reports by Seitz and Read (refer-
ence 4).

DERIVATION OF AN EQUATION FOR CREEP RATE

In the analysis of the creep process, the assumption will be
made, as in reference 4, that creep as well ag slip takes place
by the motion of dislocations. The dynamic model pre-
viously deseribed will be used. The procedure is as follows:
An equation will be derived for the steady-state rate of
creep, which will show that the rate of generation of disloca-
tions is the primary factor that determines the variation of
creep properties among materials. The rate of generation
will then be calculated in terms of rate-process theory as a
frequency factor multiplied by the probability that & source
of generation will attain the energy required to generate a
dislocation.

For a given block of volume I3, if it is assumed that no
“annihilation’” (union of pairs of dislocations of opposite
sign) takes place and that steady-state creep is being dealt
with, the number of dislocations generated per second within
the block must equal the number leaving the block per
second. The number of dislocations leaving the block per
second is the number of dislocations in an area »L; therefore

RNI*=NuL (3)

Inasmuch as the displacement produced when a dislocation
passes out of the block is d;, the shear rate %’ is given by

u’=% (Nde)d1=N¢Ud1 (4)

The occurrence of slip bands at distances of approximately
1 micron indicates an average of one source of dislocations
for each imperfection; that is

N,=1/I# (5)

When equations (3), (4), and (5) are combined, the expres-
sion for shear rate becomes

u’=%R, (6s)

Up to this point, only the creeplof single crystals has been
considered. In a consideration of polycrystalline metals,
two types of creep apparently may take place: creep occur-
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ring within the individual grains or single erystals, and creep
resulting from intergranular motion. As noted in reference
4, current data on the effect of grain size on creep leave
doubt as to the possibility of the occurrence of intergranular
creep. For example, the work reported in reference 10
on copper of various grain sizes shows no detectable difference
in creep strength other than that resulting from oxidation.
Unfortunately, this work was performed only at a single
temperature. Creep in polycrystalline metals is therefore
assumed to be predominately the result of deformation
occurring within the individual grains by the motion of
dislocations. If the orientation of the grains is such that
slip oceurs in the plane of maximum shear stress, then, as in
reference 3, the shear rate 4’ can be corrected to the tensile
cresp rate v by an additional factor of about two-thirds,
Such a factor would be of no consequence here because
d,/L is known only in order of magnitude; accurate values
cannot be given until more is known about the nature of
the crystal imperfections. Equation (6a) can therefore bo
written approximately as
u=% R,

The rate of generation R, will now be calculated. A
specific model for the mechanism of generation of a dislo-
cation must be set up and certain simplifying assumptions
made. The approximations that will be made are similar
to those used by Orowan (reference 7) but the treatment
presented here is based upon a more definite model than lLe
used. TFurthermore, considerations in reference 7 were not
applied to steady-state creep.

The gencrated dislocation will be considered to be 1 atom
long. (The length of & dislocation is its extension in the slip
plane and perpendicular to the slip direction.) The process
of generation will involve displacements of atoms Iying along
the slip direction by large fractions of an atomic distance.
A simple model for the generation of a positive dislocation at
a right-hand source is presented in figures 5 (a) and 5 (b).
If atoms 1 and 2 are simultaneously displaced in tho dirce-
tions shown in figure 5 (a) by large fractions of the lattice
spacing and atoms 3, 4, and 5 are moving in the slip direction
a8 shown, the generation of a dislocation becomes possible.
Before a dislocation will torm, however, a rearrangement of
the neighboring atoms must take place in order to achieve a
stable configuration. Figure 5 (b} shows the rearranged
condition. Comparison of figure 5 (b) with the positive
dislocation in figure 4 (b) shows that the two are cssentially
the same. The new positions of atoms 5 and 6 after rear-
rangement were found by using the approximate method
used by Taylor (reference 6) in' his discussion of the motion
of a dislocation under stress. The contributions to the
potential field in row B by the neighboring rows A and C are
taken to be sinusoidal with periods equal to the spacing of
atoms 1 and 3 in row A and atoms 2 and 4 in row C. Figure
5 (c) shows that addition of the two sinusoidal potential
functions gives a resultant potential function having four
minimums. Atoms 5, 6, and 7 can be expected to fall into
the deepest of these minimums if atom 5 had begun by oscil-
lating to the left as in figure 5 (a).

(6b)
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The displacement § of atoms 1 and 2 will be given some
fraction f of the atomic separation d; in the slip direction.
A value of f somewhat less than 1/2 makes tormation of &
stable configuration with a minimum activation energy
possible.
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(a) Activated complex for posltive dislocation,

(b) Dislocation formed by rearrangement of activated complex.
(¢) Determination of potential field in row B.

(d) Activated complex for negative dizlocation.

FI6URE 65.—Qeneration of dislocation at pesitive source.

In the calculation of R,, use of Eyring’s general theory of
rate processes will be necessary. A right-hand source, under
a shear stress 7, having the direction shown in figure 5, will be
considered. The “reactant’” is the perfect lattice at the re-
gion of high stress concentration. The activated complex
for a positive dislocation, which for brevity will be called a
positive activated complex, can be taken as the configuration
shown in figure 5 (a) and the product as the dislocation after
atomic rearrangement has taken place (fig. 5 (b)). If the
fundamental assumption of rate-process theory that equilib-
rium exists between reactant and activated complex is made,
the considerations involved in the general theory of rate
processes (reference 5) can be applied to the generation of
dislocations. From the theory of rate processes, the rate of
generation of positive dislocations Rt can be expressed as

Rjt=5 P* @
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The discussion in reference 5 (p. 189) shows that, if the
displacement involved in the transition from the activated
complex to the final state is approximately 10~8 centimeters,
the factor 1/¢ is approximately equal to T/h. In the forma-
tion of a dislocation, this transition corresponds to passing
from the configuration of figure 5(a) to that of figure 5(b),
which clearly involves a displacement of this order of magni-

tude. Hence, R,;* is given approximately by

ry=AL pr (88)
Similarly

B-=tlp- (8b)

The factors Pt and P~ will now be calculated. In
order to simplify the calculations, the theory of elasticity is
assumed to be applicable on an atomic scale. The generation
of a dislocation will be treated as & “local shear,” which takes
place by means of thermal oscillations. The energy involved
in this process will be calculated by the theory of elasticity.
Furthermore, Hooke’s law will be assumed valid for large
strains. The use of these assumptions is necessary because
the forces between individual atoms have not been evaluated
in terms of physical constants but it should be remembered
that the approximations may be serious enough to lead to
large errors in the results.

The thermal atomic oscillations in figure 5§ (a) will be
regarded as resulting in & local shearing of atoms 1, 6, and 2
producing & strain of §/d;. Inasmuch as the elastic energy
per unit volume for a shear stress 7 is /2@ and the volume
of the region of shear is 217, the elestic energy involved is

W=7 -

The result will be applied to the generation of a dislocation
as follows: Let 7o be the local shear stress attained by atoms
1, 6, and 2 in figure 5 (a). If the displacement & is fdy,
application of Hooke’s law to the displacement yields

=Ll =Gy (10)

The stress to be produced by thermal motion is
Ti=Te—Te

if it is assumed that the local shear stress to be attained by
atoms 1, 6, and 2 in figure 5 (a) must be =, independent of
applied stress. The stress r, depends on the externally
applied stress and is in the same direction as 7, From equa-
tion (9) the energy to be thermally attained ¥, therefore is

W=y (ro—1)? any
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Inasmuch as =, can be expected to be only a small fraction
of 7, for rigid materijals, the term in r, may be neglected
relative to the other terms in the binomial expansion of
(ro—7,)%. The approximation obtained is therefore

W=V @uf!—2Vafr, (12)

where equation (10) has been used.

In order to evaluate 7,, work-hardening must be consid-
ered. A crystal in the steady-state range of creep is gener-
ally work-hardened because deformation has taken place.
From the nature of a dislocation it is clear that a stress field
exists about it. By making use of this stress field, Taylor
(reference 6) has explained work-hardening on the basis of
a “lattice” of stuck dislocations. Taylor’s explanation is a
static one and is applied only to determining the form of the
stress-strain curve. In terms of a dynamic approach, the
existence of a stress field about a dislocation leads to the
concept suggested by Kochendérfer (reference 11) that the
lattice of stuck dislocations creates an inner stress field the
direction of which at the point of generation is opposite to
the externally applied shear stress 7, in the slip plane. The
value of the inner stress field at the point of generation will
be called the back stress 7, The dynamic concept of hard-
ening therefore consists in the formation of a lattice of stuck
dislocations, which results in a back stress at the point of
generation. This back stress lowers the effective shear stress
at these points and as a result the rate of generation, hence
the creep rate, decreases. These considerations lead to the
result that

“'a=Q(Ta_Tb) (13)

Inasmuch as 7, is always less than 7, the directions of 7,
and 7, arc the same.

In a large assembly of systems, which are in thermal
equilibrium with each other, the fraction that will have
energies greater than some arbitrary value eis given by e~ */*7,
In addition to the energy requirement, the occurrence of the
configuration of figure 5 (a) involves a limitation on the
direction of atoms 1, 2, 3, 4, and 5 to a particular crystallo-
graphic direction within & very smmll solid angle. If the
probability of oscillation in this direction is p, the total
probability of the configuration of figure 5 (a), that is, the
probability that a rlght.—hand source Wl]l form a positive
activated complex, is given by

P+=p58-w,/kr=pse—(Vaz’ﬂ—m.rf')f_kr _ (142)

Similarly the probability of forming a negative activated
complex (the configuration of fig. 5 (d)) at a positive source
is

P—=pﬁe—(VGrzfz+2VIff')ﬂT (14b)
ingsmuch as 7, is opposite to 7, in this case. The applied
stress r, therefore makes the generation of a positive disloca-
tion more probable than the generation of a negative disloca-
tion at & right-hand source.

If a negative dislocation is generated in the region under
discussion, it would move to the left and out of the crystal
without producing deformation if it were the only dislocation
present. The last positive dislocation generated from this
source, however, became stuck after moving through part
of the crystal lattice; that is, all forces upon it were balanced.
The generation of a negative dislocation at the point being
considered will upset this equilibrium and attract the pre-
vious positive dislocation. As the two dislocations approach
each other, the stress that each exerts on the other increases
(from the equation for the stress field about a dislocation,
reference 6) and a union takes place that results in the
annihilation of the two dislocations and restoration of a
perfect lattice. The net rate of generation R, which is the
rate of generation of positive dislocations that will eventually
produce plastic deformation, is R;*=—R,™ or, from cquations
(8a), (8b), (13), (14a}, and (14Db) is

_%’;;1' —(veetA+PI T kT ginh [2¢Vzf(ro—ro)/kT) (15)

where _
P'=—F log, p® (16)

The equation for the net rate of generation of negative
dislocations at & negative source is clearly identical with
equation (15). Equation (15) therefore gives the cxpres-
sion for the factor R, of equation (6b).

According to this derivation, the generation of a dislocation
2 atoms in length clearly involves the simultancous oscilla-
tion of twice as many atoms with sufficiently great energies.
Thus, the probability of such & gencration occurring can be
neglected as compared with the probability of generating a
1-atom dislocation.

The biyperbolic sine term in equation (15) arises from the
lowering of the potential-ecnergy barrier in the direction of
the applied stress. The heat of activation per molecule
AH, (the height of the barrier for zero applied stress) and the
entropy of activation per molecule AS; are (by comparison
with equations (1) and (2))

o AH,= V@2 (17a)
AS,=—P' (17b)

Because p is less than 1 {equation (16}), P’/ is always positive
and therefore AS; is negatlve

When the general expression for R, given by equation (15)
is combined with the creep equation (6b), the completlo
equation for the steady-state rate of creep becomes

u=24 thl" ¢ ~WOEAHPI DT ginh [0 Vaf(o—2ra)/kT] (18)

where the applied tensile stress ¢ has been substituted for
27, assuming that slip in the individual grains occurs in the
plane of maximum shear stress. For high values of applied
tensile stress ¢, the hyperbolic sine function, to a good ap-

proximation, can be replaced by an exponential and equation
(18) becomes, after taking logarithms of both sides
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d kT Va2 +P'T V

tog, u=log, (% 55 )—(FELFEE )+ 48 (o200 (19)
Equation (18), or its approximation equation (19), is the
form of the theoretical equation to be used for the steady-
state creep rate of pure polycrystalline materials as a

function of stress and temperature.

COMPARISON OF THEORETICAL AND EXPERIMENTAL CREEP
EQUATIONS

The evaluation of the back stress 7, as a function of tem-
perature and applied stress is difficult end hes not yet been
accomplished. A great deal may be learned, however, from
a comparison of theoretical equation (19) with empirical
equations. A hyperbolic sine function has been empiricelly
determined to represent the dependence of creep rafe on
applied tensile stress ¢ for many polycrystalline materials
(reference 12) in agreement with equation (18). At high
values of stress, the hyperbolic sine function reduces to an
exponent. In reference 13, creep data are presented, which
show that a relation of the form

og. (7)=——b+ve (20)

represents the experimental data in the range of high stresses,
where ¢ and b are constants for a given material and v is &
function of temperature but not of stress. If the notation
is so changed as to make this equation sumlar to equation
(19), equation (20) can be rewritten

d, IcT A+4-BT | Bo

log, u= log, —W+ (21)
where
A=ka
B—kb+ log, (dl"
B=+kT

Comparison of the forms of equations (19) and (21) show good
agreement. The simultaneous validity of the two equations
requires that 7, be a linear function of stress. In addjtion,
the condition r,=0 for =0 leads to the following expression
for =

rn=F(T)c (22)

Equation (21) shows that three factors completely deter-
mine the steady-state rate of creep: the constants A and B
and the temperature function 8. A comparison of equation
(21) with equations (19) and (22) shows that these factors
are expressed in terms of physical constants of the material as

A=VG,fz2 (23)
B=P'—Vf%2Gya: (24)
B=qVaf[1—2F(¥)] (25)

where the modulus of rigidity @ has been taken in the approxi-
mate form
COMPUTATIONS AND PRECISION

Creep data were obtained from literature for a number of
polycrystalline “pure” metals that had been annealed
(references 13 to 20). (Although the references do not gen-
erally state the impurity content, the metals will be consid-
ered pure ss compared with a]loys ) The reproducibility
of the creep data from the various sources is unknown. From
these data, curves of log creep rate against stress were plotted
and straight lines were obtained. In terms of equation
(21), the coefficient 8/kT divided by 2.3 is the slope of this
straight line and the intercept is equel to

log d kT\ A+BT
E\Z % ) 23T

The values of 8 and H (defined as A+ BT) were then deter-
mined from the slopes and the intercepts, respectively.
Finally, A and B were separately determined from & linear
plot of H against T where d;/L was considered as 10~ for all
materials.

The errors involved in the determination of A, B, and B
depend in part on the number of stresses for which data were
available at each temperature and on the number of tempera-~
tures at which observations were made. The ranges in tem-
peratures and stresses used will also affeet the error. Gen-
erally, the errors for 4, B, and 8 were estimated to be about
+5X10"® ergs, :I:8X10‘1° ergs per °K, and 430 percenﬁ
respectively. —

For a large number of pure polycrystalline metals, 8 was
found to vary with temperature. The function

p=Crer

approximates the temperature dependence of 8. This fune-
tion was determined over comparatively short ranges of tem-
perature (200° to 300° K) and therefore may not apply over
a large temperature range.

Values of the modulus of rigidity & were obtained from

references 21 and 22, which show that variations in the value
of & for a given material are about 15 percent. Room-
temperature values were used as approximations of the
absolute-zero values of @.

RESULTS AND DISCUSSION
FACTOR 4
Equation (23) gives the theoretical expression
V@, fa8

for the factor A4 of the empirical equation (21). In figure 6,
AJV is plotted as a function of Gz% The line drawn is the
best straight line through the origin and represents the
data within the experimental error of A. From the previous
theoretical discussion, the slope of this line is f and is equal
to 025 or less. Because the activation energy predicted
on the basis of the validity of Hooke’s law will be greater
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than the actual value, it can be expected that the theoretical
prediction will be too high. The experimental slope from
the straight line of figure 6 is 0.14.

The egreement between theoretical prediction and ex-
perimental results is encouraging when the assumptions
made and the variety of data sources are considered.
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Fraore 6.—Comperison of experimental data for fnotor A of equation (21) with theory.

FACTOR B

When equations (19} and (22) were compared with the
empirical equation (21), B was found to be equal to

P’ — V2 f2Gye

where « is determined from the approximate relation
G=G1—aT)

The order of magnitude of the term Vz*Gyx, which is

3 X 107 ergs per °K, is within the estimated error of B, .

neglected in comparing the B values for differentmaterials.
The values of B for different metals are presented inthe
following table:

Material B {ergs/°K) | Reference
4010~ 13
45 14,16
39 17
b4 20
38 16
42 13
36 13
47 19

A correlation exists between the scatter of date presented
in figure 6 and the scatier of B values in this table. The
straight line in figure 6 falls between the experimental points
for aluminum and iron. The table shows that aluminum
and iron have B values equal to 40107 and 39< 1076 ergs
per °K, respectively. The points above the line in figure
6 are all related to metals that have B values less than
40107 ergs per °K and the points below the line corre-
spond to B values greater than 40)107'® ergs per °K.

The correlation between the direction of scatter of date
for A and B is satisfactorily explained by considering the
method used to obtain experimental values of 4 and B.

For each material, values of H (defined as 4+4+BT) were
plotted against T' and the values of A and B were obtained
from the intercept and slope, respectively, of the best straight
line drawn through the points. For a given material, the
value of the intercept A will increase as the slope B of the
line drawn through the experimental points is decreased. In
view of this explanation, the scatter of data for A about the
theoretical line appears.to result from experimental error
alone. The conclusion may also be drawn that the correct
values of B fall about their mean value much more closely
than those in the table,

When the term containing « is neglected, B becomes equal
to P/, which from equation (17b) is the negative of the en-
tropy of activation AS,. The high negative value of the
entropy of activation in the creep process has been pointed
out in references 3 and 13 but satisfactory quantitative ex-
planstions of the magnitude of this factor could not be given.

On the basis of the present treatment, the restriction of
direction of five atoms participating in the generation of an
activated complex accounts for the large negative entropy
of activation. A good approximation of the value of the
probability of osecillation p of an atom in the slip direction
can be obtained by substituting values of B for P’ in equa-
tion (16). A value of about 310~ was obtained for p
when P’ was equal to 40107 ergs per °K.

FACTOR §

The theoretical expression for the factor 8 is given by

B=qVaf[1—2F(D)]

The term F(T) in this equation is related to the baclk stress
m {equation (22)), which resulted from the inner stress field
about a dislocation. This stress field is related to the modu-
lus of rigidity @ (reference 6). Therefore, 8 at any given
temperature was expected to be a function of ¢. Figure 7
shows that at room temperature 8 varies as G™2.

Inorder to determine whether the temperature dependence
of & could alone account for the temperature dependence of 8,
the variation of ¢ with temperature was investigated. It
can be seen in figure 8 that for iron, 8 and G~* have about
the same temperature dependence. Figure 7 shows, how-
ever, that 8 is proportional to G=®. Therefore, it- can be
concluded that F(T) contains a tempersture-dependent
factor in addition to G. -

EVALUATION OF RESULTS

The statement is made in reference 9 (p. 344) that “a full
interpretation of creep results in terms of dislocation theory
would be welcome but has not yet been achieved.” Two
contributions are made herein to a fuller understanding of
creep in terms of both rate-process theory and dislocation
theory. The first contribution is the quantitative depend-
ence of creep on physical constants of the material; the
second is an understanding of the origin of the large negative
entropy of activation AS,, which was & source of difficulty in
previous treatments (references 3 and 13). B

Although the previous theories have been successful in
showing the dependence of creep on stress and temperature,
none has been able to show the quantitative dependence of
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creep on physical constants of materials. ¥rom a practical
point of view, equations that relate creep to stress and temper-
ature have useful engineering application in predicting the
creep behavior of a given material. These equations can
yield little useful information, however, to the metallurgist
who must find criterions fo use in synthesizing alloys for better
creep resistance. A knowledge of the dependence of creep
rate on physical constants of material would yield such
criterions and therefore have a praciical as well as an
academic interest. , S

The empirical equation that gives the dependence of
steady-state rate of creep on stress ¢ and absolute tempera-
ture 7' can be considered as

d k A+ BT
log u=log (5 )~ g3 prtzsrr W

The theoretical treatment in this report has shown that the
parameters 4, B, and B depend on physical constants of the
material in the following manner:

A=VG o (23)
B=P'— V% Ga=P'— Aa (24)
B=qVaf [1—2F(T)] (25)

Equation (212) shows that, in order to have a low rate of
creep, A and B must be large and # must be small. Equation
(24) indicates that the effect of any physical constant on 4
will be in the opposite direction to its effect on B. Inas-
much as « in equation (24) is of the order of 107* and P’ has
been shown to be approxzimately constent for all pure an-
nealed materials, the physical constant will heve a greater
effect on A than on B up to a temperature of 10* °K. The
most important physical constant in equation (23) is the
modulus of rigidity at absolute zero ¢ inasmuch as the other
constants do not vary much in order of magnitude among
different materials. Empirically, p was also found to de-

crease with increasing @. Pure metals having high moduliof

rigidity will therefore be creep resistant.
The relation between modulus of rigidity & and modulus
of elasticity E is given by

E
C=sG+m

Inasmuch as values of Poisson’s ratio g usually run from
about 0.3 to 0.4, the effect of variations in this factor for
different materials will be so small that in general, pure
metals will be creep resistant if their modulus of elasticity is
high.

The extension of the theory to alloys, in particular heat-
registing alloys, will require modification to include the effects
of strains produced by solid soluble atoms and precipitated
particles. In view of the need for eriterions that will hasten
the development of alloys having heat-resisting properties,
any indications that can be obtained from the present theory
should be considered. The theory suggests the use of mate-
rials of high moduli of rigidity, and therefore of high moduli
of elasticity, such as tungsten, molybdenum, and cemented
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tungsten carbide as matrix materials for heat-resisting alloys.
An investigation conducted under the auspices of the Na-
tional Defense Research Committee has shown that chrome-
base alloys having high tungsten or molybdenum content
generally have better heat-resisting properties than currently
used alloys. The use of still higher percentages of these
elements therefore merits serious consideration.

AIrRcRAPT ENGINE RESEARCH LABORATORY,
Nationar Apvisory COMMITTEE FOR AERONAUTICS,
CreveLAND, Omnio, January I, 1946.
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