346 research outputs found

    The FERRUM project: Transition probabilities for forbidden lines in [FeII] and experimental metastable lifetimes

    Full text link
    Accurate transition probabilities for forbidden lines are important diagnostic parameters for low-density astrophysical plasmas. In this paper we present experimental atomic data for forbidden [FeII] transitions that are observed as strong features in astrophysical spectra. Aims: To measure lifetimes for the 3d^6(^3G)4s a ^4G_{11/2} and 3d^6(^3D)4s b ^4D_{1/2} metastable levels in FeII and experimental transition probabilities for the forbidden transitions 3d^7 a ^4F_{7/2,9/2}- 3d^6(^3G)4s a ^4G_{11/2}. Methods: The lifetimes were measured at the ion storage ring facility CRYRING using a laser probing technique. Astrophysical branching fractions were obtained from spectra of Eta Carinae, obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. The lifetimes and branching fractions were combined to yield absolute transition probabilities. Results: The lifetimes of the a ^4G_{11/2} and the b ^4D_{1/2} levels have been measured and have the following values, 0.75(10) s and 0.54(3) s respectively. Furthermore, we have determined the transition probabilities for two forbidden transitions of a ^4F_{7/2,9/2}- a ^4G_{11/2} at 4243.97 and 4346.85 A. Both the lifetimes and the transition probabilities are compared to calculated values in the literature.Comment: 5 pages, accepted for publication in A&

    Lifetime measurements of Metastable States in Fe+

    Get PDF
    The lifetime of two metastable levels in Fe+ has been measured by laser probing of a stored ion beam. In the dense spectrum of Fe+, the metastable levels a 6S5/2 and b 4D7/2 were selected and their lifetimes were determined to be 230+/-30 and 530+/-30 ms, respectively. The lifetimes are compared with previous theoretical results. Metastable lifetime measurements of Fe+ are of great importance for interpretation of spectra from astronomical objects. The present experiment opens for the possibilities to investigate lifetimes of metastable states in complex atomic ions, which have, so far, been unexplored

    The FERRUM project: an extremely long radiative lifetime in Ti II measured in an ion storage ring

    Get PDF
    We have extended the laser probing technique at the CRYRING storage ring to measurement of the extremely long lifetime (28 s) of the metastable 3d2(3P)4s b 4P5/2 level in Ti II. The result obtained demonstrates the power of this method for investigation of such long-lived levels. This is the first experimental lifetime investigation of metastable states in Ti II

    Patients with shoulder impingement remain satisfied 6 years after arthroscopic subacromial decompression: A prospective study of 46 patients

    Get PDF
    Background Although arthroscopic subacromial decompression (ASD) is a common procedure for treatment of shoulder impingement, few long term results have been published. In this prospective study, we determined whether the high degree of patient satisfaction at 6 months postoperatively reported by us earlier remained at the 6-year follow-up. Patients and methods We originally reported high patient satisfaction 6 months after ASD for shoulder impingement in 50 prospectively studied patients using the Disability of the Arm Shoulder and Hand questionnaire (DASH) and the Visual Analog Scale (VAS). Patients with associated shoulder disorders were excluded. The surgeons were experienced shoulder arthroscopists. 6 years after surgery, the DASH questionnaire and the VAS were sent to these 50 patients. 2 patients had other medical problems of the upper extremity that affected the DASH and VAS scores, 1 patient was lost to follow-up, and another refused to participate. Thus, 46 patients with a mean age of 55 (33-78) years were included in this 6-year evaluation. Results The considerable improvement in both the DASH score and the VAS that was observed 6 months after surgery persisted or had even improved 6 years after surgery. Interpretation Properly selected patients with shoulder impingement treated with ASD remain satisfied 6 years after surgery

    Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes

    Get PDF
    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable

    The FERRUM Project: experimental and theoretical transition rates of forbidden [Sc II] lines and radiative lifetimes of metastable Sc II levels

    Full text link
    Context. In many plasmas, long-lived metastable atomic levels are depopulated by collisions (quenched) before they decay radiatively. In low-density regions, however, the low collision rate may allow depopulation by electric dipole (E1) forbidden radiative transitions, so-called forbidden lines (mainly M1 and E2 transitions). If the atomic transition data are known, these lines are indicators of physical plasma conditions and used for abundance determination. Aims. Transition rates can be derived by combining relative intensities between the decay channels, so-called branching fractions (BFs), and the radiative lifetime of the common upper level. We use this approach for forbidden [Sc ii] lines, along with new calculations. Methods. Neither BFs for forbidden lines, nor lifetimes of metastable levels, are easily measured in a laboratory. Therefore, astrophysical BFs measured in Space Telescope Imaging Spectrograph (STIS) spectra of the strontium filament of Eta Carinae are combined with lifetime measurements using a laser probing technique on a stored ion-beam (CRYRING facility,MSL, Stockholm). These quantities are used to derive the absolute transition rates (A-values). New theoretical transition rates and lifetimes are calulated using the CIV3 code. Results. We report experimental lifetimes of the Sc ii levels 3d2 a3P0,1,2 with lifetimes 1.28, 1.42, and 1.24 s, respectively, and transition rates for lines from these levels down to 3d4s a3D in the region 8270-8390 A. These are the most important forbidden [Sc ii] transitions. New calculations for lines and metastable lifetimes are also presented, and are in good agreement with the experimental data.Comment: 5 pages. Accepted for A&

    Development of a lung slice preparation for recording ion channel activity in alveolar epithelial type I cells

    Get PDF
    BACKGROUND: Lung fluid balance in the healthy lung is dependent upon finely regulated vectorial transport of ions across the alveolar epithelium. Classically, the cellular locus of the major ion transport processes has been widely accepted to be the alveolar type II cell. Although evidence is now emerging to suggest that the alveolar type I cell might significantly contribute to the overall ion and fluid homeostasis of the lung, direct assessment of functional ion channels in type I cells has remained elusive. METHODS: Here we describe a development of a lung slice preparation that has allowed positive identification of alveolar type I cells within an intact and viable alveolar epithelium using living cell immunohistochemistry. RESULTS: This technique has allowed, for the first time, single ion channels of identified alveolar type I cells to be recorded using the cell-attached configuration of the patch-clamp technique. CONCLUSION: This exciting new development should facilitate the ascription of function to alveolar type I cells and allow us to integrate this cell type into the general model of alveolar ion and fluid balance in health and disease
    corecore