27 research outputs found

    On thermodynamics second law in the modified Gauss Bonnet gravity

    Full text link
    The second law and the generalized second law of thermodynamics in cosmology in the framework of the modified Gauss-Bonnet theory of gravity are investigated. The conditions upon which these laws hold are derived and discussed.Comment: 9pages, typos corrected, references adde

    Dark energy problem: from phantom theory to modified Gauss-Bonnet gravity

    Full text link
    The solution of dark energy problem in the models without scalars is presented. It is shown that late-time accelerating cosmology may be generated by the ideal fluid with some implicit equation of state. The universe evolution within modified Gauss-Bonnet gravity is considered. It is demonstrated that such gravitational approach may predict the (quintessential, cosmological constant or transient phantom) acceleration of the late-time universe with natural transiton from deceleration to acceleration (or from non-phantom to phantom era in the last case).Comment: LaTeX 8 pages, prepared for the Proceedings of QFEXT'05, minor correctons, references adde

    Unifying inflation with dark energy in modified F(R) Horava-Lifshitz gravity

    Full text link
    We study FRW cosmology for a non-linear modified F(R) Horava-Lifshitz gravity which has a viable convenient counterpart. A unified description of early-time inflation and late-time acceleration is possible in this theory, but the cosmological dynamic details are generically different from the ones of the convenient viable F(R) model. Remarkably, for some specific choice of parameters they do coincide. The emergence of finite-time future singularities is investigated in detail. It is shown that these singularities can be cured by adding an extra, higher-derivative term, which turns out to be qualitatively different when compared with the corresponding one of the convenient F(R) theory.Comment: LaTeX 12 pages, typos are correcte

    On Isotropic Turbulence in the Dark Fluid Universe

    Get PDF
    As first part of this work, experimental information about the decay of isotropic turbulence in ordinary hydrodynamics, u^2(t) proportional to t^{-6/5}, is used as input in FRW equations in order to investigate how an initial fraction f of turbulent kinetic energy in the cosmic fluid influences the cosmological development in the late, quintessence/phantom, universe. First order perturbative theory to the first order in f is employed. It turns out that both in the Hubble factor, and in the energy density, the influence from the turbulence fades away at late times. The divergences in these quantities near the Big Rip behave essentially as in a non-turbulent fluid. However, for the scale factor, the turbulence modification turns out to diverge logarithmically. As second part of our work, we consider the full FRW equation in which the turbulent part of the dark energy is accounted for by a separate term. It is demonstrated that turbulence occurrence may change the future universe evolution due to dissipation of dark energy. For instance, phantom-dominated universe becomes asymptotically a de Sitter one in the future, thus avoiding the Big Rip singularity.Comment: 10 pages, no figures, significant revision. Matches published versio

    Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy

    Full text link
    The unifying approach to early-time and late-time universe based on phantom cosmology is proposed. We consider gravity-scalar system which contains usual potential and scalar coupling function in front of kinetic term. As a result, the possibility of phantom-non-phantom transition appears in such a way that universe could have effectively phantom equation of state at early time as well as at late time. In fact, the oscillating universe may have several phantom and non-phantom phases. As a second model we suggest generalized holographic dark energy where infrared cutoff is identified with combination of FRW parameters: Hubble constant, particle and future horizons, cosmological constant and universe life-time (if finite). Depending on the specific choice of the model the number of interesting effects occur: the possibility to solve the coincidence problem, crossing of phantom divide and unification of early-time inflationary and late-time accelerating phantom universe. The bound for holographic entropy which decreases in phantom era is also discussed.Comment: 13 pages, clarifications/refs added, to match with published versio

    What is there in the black box of dark energy: variable cosmological parameters or multiple (interacting) components?

    Get PDF
    The coincidence problems and other dynamical features of dark energy are studied in cosmological models with variable cosmological parameters and in models with the composite dark energy. It is found that many of the problems usually considered to be cosmological coincidences can be explained or significantly alleviated in the aforementioned models.Comment: 6 pages, 1 figure, talk given at IRGAC2006 (Barcelona, July 11-15, 2006), to appear in J. Phys.

    Screening of cosmological constant for De Sitter Universe in non-local gravity, phantom-divide crossing and finite-time future singularities

    Full text link
    We investigate de Sitter solutions in non-local gravity as well as in non-local gravity with Lagrange constraint multiplier. We examine a condition to avoid a ghost and discuss a screening scenario for a cosmological constant in de Sitter solutions. Furthermore, we explicitly demonstrate that three types of the finite-time future singularities can occur in non-local gravity and explore their properties. In addition, we evaluate the effective equation of state for the universe and show that the late-time accelerating universe may be effectively the quintessence, cosmological constant or phantom-like phases. In particular, it is found that there is a case in which a crossing of the phantom divide from the non-phantom (quintessence) phase to the phantom one can be realized when a finite-time future singularity occurs. Moreover, it is demonstrated that the addition of an R2R^2 term can cure the finite-time future singularities in non-local gravity. It is also suggested that in the framework of non-local gravity, adding an R2R^2 term leads to possible unification of the early-time inflation with the late-time cosmic acceleration.Comment: 42 pages, no figure, version accepted for publication in General Relativity and Gravitatio

    On compatibility of string effective action with an accelerating universe

    Full text link
    In this paper, we fully investigate the cosmological effects of the moduli dependent one-loop corrections to the gravitational couplings of the string effective action to explain the cosmic acceleration problem in early (and/or late) universe. These corrections comprise a Gauss-Bonnet (GB) invariant multiplied by universal non-trivial functions of the common modulus σ\sigma and the dilaton ϕ\phi. The model exhibits several features of cosmological interest, including the transition between deceleration and acceleration phases. By considering some phenomenologically motivated ansatzs for one of the scalars and/or the scale factor (of the universe), we also construct a number of interesting inflationary potentials. In all examples under consideration, we find that the model leads only to a standard inflation (w1w \geq -1) when the numerical coefficient δ\delta associated with modulus-GB coupling is positive, while the model can lead also to a non-standard inflation (w<1w<-1), if δ\delta is negative. In the absence of (or trivial) coupling between the GB term and the scalars, there is no crossing between the w1w -1 phases, while this is possible with non-trivial GB couplings, even for constant dilaton phase of the standard picture. Within our model, after a sufficient amount of e-folds of expansion, the rolling of both fields ϕ\phi and σ\sigma can be small. In turn, any possible violation of equivalence principle or deviations from the standard general relativity may be small enough to easily satisfy all astrophysical and cosmological constraints.Comment: 30 pages, 8 figures; v2 significant changes in notations, appendix and refs added; v3 significant revisions, refs added; v4 appendix extended, new refs, published versio

    Late-time cosmology in (phantom) scalar-tensor theory: dark energy and the cosmic speed-up

    Full text link
    We consider late-time cosmology in a (phantom) scalar-tensor theory with an exponential potential, as a dark energy model with equation of state parameter close to -1 (a bit above or below this value). Scalar (and also other kinds of) matter can be easily taken into account. An exact spatially-flat FRW cosmology is constructed for such theory, which admits (eternal or transient) acceleration phases for the current universe, in correspondence with observational results. Some remarks on the possible origin of the phantom, starting from a more fundamental theory, are also made. It is shown that quantum gravity effects may prevent (or, at least, delay or soften) the cosmic doomsday catastrophe associated with the phantom, i.e. the otherwise unavoidable finite-time future singularity (Big Rip). A novel dark energy model (higher-derivative scalar-tensor theory) is introduced and it is shown to admit an effective phantom/quintessence description with a transient acceleration phase. In this case, gravity favors that an initially insignificant portion of dark energy becomes dominant over the standard matter/radiation components in the evolution process.Comment: LaTeX file, 48 pages, discussion of Big Rip is enlarged, a reference is adde

    Finite-time future singularities in modified Gauss-Bonnet and F(R,G)\mathcal{F}(R,G) gravity and singularity avoidance

    Get PDF
    We study all four types of finite-time future singularities emerging in late-time accelerating (effective quintessence/phantom) era from F(R,G)\mathcal{F}(R,G)-gravity, where RR and GG are the Ricci scalar and the Gauss-Bonnet invariant, respectively. As an explicit example of F(R,G)\mathcal{F}(R,G)-gravity, we also investigate modified Gauss-Bonnet gravity, so-called F(G)F(G)-gravity. In particular, we reconstruct the F(G)F(G)-gravity and F(R,G)\mathcal{F}(R,G)-gravity models where accelerating cosmologies realizing the finite-time future singularities emerge. Furthermore, we discuss a possible way to cure the finite-time future singularities in F(G)F(G)-gravity and F(R,G)\mathcal{F}(R,G)-gravity by taking into account higher-order curvature corrections. The example of non-singular realistic modified Gauss-Bonnet gravity is presented. It turns out that adding such non-singular modified gravity to singular Dark Energy makes the combined theory to be non-singular one as well.Comment: 35 pages, no figure, published version, references adde
    corecore