In this paper, we fully investigate the cosmological effects of the moduli
dependent one-loop corrections to the gravitational couplings of the string
effective action to explain the cosmic acceleration problem in early (and/or
late) universe. These corrections comprise a Gauss-Bonnet (GB) invariant
multiplied by universal non-trivial functions of the common modulus σ
and the dilaton ϕ. The model exhibits several features of cosmological
interest, including the transition between deceleration and acceleration
phases. By considering some phenomenologically motivated ansatzs for one of the
scalars and/or the scale factor (of the universe), we also construct a number
of interesting inflationary potentials. In all examples under consideration, we
find that the model leads only to a standard inflation (w≥−1) when the
numerical coefficient δ associated with modulus-GB coupling is positive,
while the model can lead also to a non-standard inflation (w<−1), if δ
is negative. In the absence of (or trivial) coupling between the GB term and
the scalars, there is no crossing between the w−1 phases, while
this is possible with non-trivial GB couplings, even for constant dilaton phase
of the standard picture. Within our model, after a sufficient amount of e-folds
of expansion, the rolling of both fields ϕ and σ can be small. In
turn, any possible violation of equivalence principle or deviations from the
standard general relativity may be small enough to easily satisfy all
astrophysical and cosmological constraints.Comment: 30 pages, 8 figures; v2 significant changes in notations, appendix
and refs added; v3 significant revisions, refs added; v4 appendix extended,
new refs, published versio