61 research outputs found

    Effects of Landslides on Terrestrial Carbon Stocks With a Coupled Geomorphic-Biologic Model: Southeast Alaska, United States

    Get PDF
    Landslides influence the global carbon (C) cycle by facilitating transfer of terrestrial C in biomass and soils to offshore depocenters and redistributing C within the landscape, affecting the terrestrial C reservoir itself. How landslides affect terrestrial C stocks is rarely quantified, so we derive a model that couples stochastic landslides with terrestrial C dynamics, calibrated to temperate rainforests in southeast Alaska, United States. Modeled landslides episodically transfer C from scars to deposits and destroy living biomass. After a landslide, total C stocks on the scar recover, while those on the deposit either increase (in the case of living biomass) or decrease while remaining higher than if no landslide had occurred (in the case of dead biomass and soil C). Specifically, modeling landslides in a 29.9 km 2 watershed at the observed rate of 0.004 landslides km −2 yr −1 decreases average living biomass C density by 0.9 tC ha −1 (a relative amount of 0.4%), increases dead biomass C by 0.3 tC ha −1 (0.6%), and increases soil C by 3.4 tC ha −1 (0.8%) relative to a base case with no landslides. The net effect is a small increase in total terrestrial C stocks of 2.8 tC ha −1 (0.4%). The size of this boost increases with landslide frequency, reaching 6.5% at a frequency of 0.1 landslides km −2 yr −1. If similar dynamics occur in other landslide-prone regions of the globe, landslides should be a net C sink and a natural buffer against increasing atmospheric CO2 levels, which are forecast to increase landslide-triggering precipitation events

    Radiative Forcing by Dust and Black Carbon on the Juneau Icefield, Alaska

    Get PDF
    Here we present the first known data set on black carbon (BC) and mineral dust concentrations in snow from the Juneau Icefield (JIF) in southeastern Alaska, where glacier melt rates are among the highest on Earth. In May 2016, concentrations of BC (0.4–3.1 ÎŒg/L) and dust (0.2–34 mg/L) were relatively low and decreased toward the interior of the JIF. The associated radiative forcing (RF) averaged 4 W/m2. In July, after 10 weeks of exposure, the aged snow surface had substantially higher concentrations of BC (2.1–14.8 ÎŒg/L) and dust (11–72 mg/L) that were not spatially distributed by elevation or distance from the coast. RF by dust and BC ranged from 70 to 130 W/m2 (87 W/m2 average) across the JIF in July, and RF was dominated by dust. The associated median snow water equivalent reduction in the July samples is estimated at 10–18 mm/day, potentially advancing melt on the scale of days to weeks. Aging of the snow surface in summer likely resulted in a positive feedback of melt consolidation, enhanced solar absorption and melting, and further concentration of surface particles. Regional projections of warming temperatures and increased rain at the expense of snow make it likely that summer season darkening will become a more important contributor to the high melt rates on the JIF. Further studies are needed to elucidate the spatiotemporal occurrence of various light‐absorbing particles on the JIF, and models of ice field wastage should incorporate their associated RF

    Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    Get PDF
    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6 · 1034 cm−2 s −1 . A consequence of this increased luminosity is the expected radiation damage at 3000 fb−1 after ten years of operation, requiring the tracking detectors to withstand fluences to over 1 · 1016 1 MeV neq/cm2 . In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 ”m FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 ”m thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 ”m thick full size radial (end-cap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 ”m strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch

    Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease

    Get PDF
    Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and prevention therapies in Alzheimer's disease. The Alzheimer's disease DREAM Challenge was designed as a computational crowdsourced project to benchmark the current state-of-the-art in predicting cognitive outcomes in Alzheimer's disease based on high dimensional, publicly available genetic and structural imaging data. This meta-analysis failed to identify a meaningful predictor developed from either data modality, suggesting that alternate approaches should be considered for prediction of cognitive performance

    Sediment geochemistry of streams draining abandoned lead / zinc mines in central Wales: the Afon Twymyn

    Get PDF
    Purpose Despite the decline of metal mining in the UK during the early 20th century, a substantial legacy of heavy metal contamination persists in river channel and floodplain sediments. Poor sediment quality is likely to impede the achievement of ’good’ chemical and ecological status for surface waters under the European Union Water Framework Directive. This paper examines the environmental legacy of the Dylife lead/zinc mine in the central Wales mining district. Leachable heavy metal concentrations in the bed sediments of the Afon Twymyn are established and the geochemical partitioning, potential mobility and bioavailability of sediment-associated heavy metals are established. Materials and methods Sediment samples were collected from the river bed and dry-sieved into two size fractions (<63 ÎŒm and 64–2,000 ÎŒm). The fractionated samples were then subjected to a sequential extraction procedure to isolate heavy metals (Pb, Zn, Cu, Cd, Fe, Mn) in three different geochemical phases. Sediment samples were then analysed for heavy metals using ICP-AES. Results and discussion The bed sediment of the Afon Twymyn is grossly polluted with heavy metals. Within the vicinity of the former mine, Pb concentrations are up to 100 times greater than levels reported to have deleterious impacts on aquatic ecology. Most heavy metals exist in the most mobile easily exchangeable and carbonate-bound geochemical phases, potentially posing serious threats to ecological integrity and constituting a significant, secondary, diffuse source of pollution. Metal concentrations decrease sharply downstream of the former mine, although there is a gradual increase in the proportion of readily extractable Zn and Cd. Conclusions Implementation of sediment quality guidelines is important in order to achieve the aims of the Water Framework Directive. Assessments of sediment quality should include measurements of background metal concentrations, river water physico-chemistry and, most importantly, metal mobility and potential bioavailability. Uniformity of sediment guidelines throughout Europe and flexibility of targets with regard to the most heavily contaminated mine sites are recommended
    • 

    corecore