98 research outputs found

    Gesture's body orientation modulates the N400 for visual sentences primed by gestures

    Get PDF
    Body orientation of gesture entails social‐communicative intention, and may thus influence how gestures are perceived and comprehended together with auditory speech during face‐to‐face communication. To date, despite the emergence of neuroscientific literature on the role of body orientation on hand action perception, limited studies have directly investigated the role of body orientation in the interaction between gesture and language. To address this research question, we carried out an electroencephalography (EEG) experiment presenting to participants (n = 21) videos of frontal and lateral communicative hand gestures of 5 s (e.g., raising a hand), followed by visually presented sentences that are either congruent or incongruent with the gesture (e.g., “the mountain is high/low…”). Participants underwent a semantic probe task, judging whether a target word is related or unrelated to the gesture‐sentence event. EEG results suggest that, during the perception phase of handgestures, while both frontal and lateral gestures elicited a power decrease in both the alpha (8–12 Hz) and the beta (16–24 Hz) bands, lateral versus frontal gestures elicited reduced power decrease in the beta band, source‐located to the medial prefrontal cortex. For sentence comprehension, at the critical word whose meaning is congruent/incongruent with the gesture prime, frontal gestures elicited an N400 effect for gesture‐sentence incongruency. More importantly, this incongruency effect was significantly reduced for lateral gestures. These findings suggest that body orientation plays an important role in gesture perception, and that its inferred social‐communicative intention may influence gesture‐language interaction at semantic level

    GLASS: Geometric Latent Augmentation for Shape Spaces

    Get PDF
    We investigate the problem of training generative models on very sparse collections of 3D models. Particularly, instead of using difficult-to-obtain large sets of 3D models, we demonstrate that geometrically-motivated energy functions can be used to effectively augment and boost only a sparse collection of example (training) models. Technically, we analyze the Hessian of the as-rigid-as-possible (ARAP) energy to adaptively sample from and project to the underlying (local) shape space, and use the augmented dataset to train a variational autoencoder (VAE). We iterate the process, of building latent spaces of VAE and augmenting the associated dataset, to progressively reveal a richer and more expressive generative space for creating geometrically and semantically valid samples. We evaluate our method against a set of strong baselines, provide ablation studies, and demonstrate application towards establishing shape correspondences. Glassproduces multiple interesting and meaningful shape variations even when starting from as few as 3-10 training shapes. Our code is available at https://sanjeevmk.github.io/glass_webpage/

    Analytical method for parameterizing the random profile components of nanosurfaces imaged by atomic force microscopy

    Full text link
    The functional properties of many technological surfaces in biotechnology, electronics, and mechanical engineering depend to a large degree on the individual features of their nanoscale surface texture, which in turn are a function of the surface manufacturing process. Among these features, the surface irregularities and self-similarity structures at different spatial scales, especially in the range of 1 to 100 nm, are of high importance because they greatly affect the surface interaction forces acting at a nanoscale distance. An analytical method for parameterizing the surface irregularities and their correlations in nanosurfaces imaged by atomic force microscopy (AFM) is proposed. In this method, flicker noise spectroscopy - a statistical physics approach - is used to develop six nanometrological parameters characterizing the high-frequency contributions of jump- and spike-like irregularities into the surface texture. These contributions reflect the stochastic processes of anomalous diffusion and inertial effects, respectively, in the process of surface manufacturing. The AFM images of the texture of corrosion-resistant magnetite coatings formed on low-carbon steel in hot nitrate solutions with coating growth promoters at different temperatures are analyzed. It is shown that the parameters characterizing surface spikiness are able to quantify the effect of process temperature on the corrosion resistance of the coatings. It is suggested that these parameters can be used for predicting and characterizing the corrosion-resistant properties of magnetite coatings.Comment: 7 pages, 3 figures, 2 tables; to be published in Analys

    Grain boundary migration in polycrystalline α\alpha-Fe

    Full text link
    High energy x-ray diffraction microscopy was used to image the microstructure of α\alpha-Fe before and after a 600 ^\circC anneal. These data were used to determine the areas, curvatures, energies, and velocities of approximately 40,000 grain boundaries. The measured grain boundary properties depend on the five macroscopic grain boundary parameters. The velocities are not correlated with the product of the mean boundary curvature and grain boundary energy, usually assumed to be the driving force. Boundary migration is made up of area changes (lateral motion) and translation (normal motion) and both contribute to the total migration. Through the lateral motion component of the migration, low energy boundaries tend to expand in area while high energy boundaries shrink, reducing the average energy through grain boundary replacement. The driving force for this process is not related to curvature and might disrupt the expected curvature-velocity relationship.Comment: 33 pages, double spaced, accepted for publication in Acta Materiali

    Variation in the provision and practice of implant-based breast reconstruction in the UK: Results from the iBRA national practice questionnaire

    Get PDF
    Introduction The introduction of biological and synthetic meshes has revolutionised the practice of implant-based breast reconstruction (IBBR) but evidence for effectiveness is lacking. The iBRA (implant Breast Reconstruction evAluation) study is a national trainee-led project that aims to explore the practice and outcomes of IBBR to inform the design of a future trial. We report the results of the iBRA National Practice Questionnaire (NPQ) which aimed to comprehensively describe the provision and practice of IBBR across the UK. Methods A questionnaire investigating local practice and service provision of IBBR developed by the iBRA Steering Group was completed by trainee and consultant leads at breast and plastic surgical units across the UK. Summary data for each survey item were calculated and variation between centres and overall provision of care examined. Results 81 units within 79 NHS-hospitals completed the questionnaire. Units offered a range of reconstructive techniques, with IBBR accounting for 70% (IQR:50–80%) of participating units' immediate procedures. Units on average were staffed by 2.5 breast surgeons (IQR:2.0–3.0) and 2.0 plastic surgeons (IQR:1.0–3.0) performing 35 IBBR cases per year (IQR:20-50). Variation was demonstrated in the provision of novel different techniques for IBBR especially the use of biological (n = 62) and synthetic (n = 25) meshes and in patient selection for these procedures. Conclusions The iBRA-NPQ has demonstrated marked variation in the provision and practice of IBBR in the UK. The prospective audit phase of the iBRA study will determine the safety and effectiveness of different approaches to IBBR and allow evidence-based best practice to be explored

    Withania somnifera Root Extract Enhances Chemotherapy through ‘Priming’

    Get PDF
    Withania somnifera extracts are known for their anti-cancerous, anti-inflammatory and antioxidative properties. One of their mechanisms of actions is to modulate mitochondrial function through increasing oxidative stress. Recently ‘priming’ has been suggested as a potential mechanism for enhancing cancer cell death. In this study we demonstrate that ‘priming’, in HT-29 colon cells, with W. somnifera root extract increased the potency of the chemotherapeutic agent cisplatin. We have also showed the W. somnifera root extract enhanced mitochondrial dysfunction and that the underlying mechanism of ‘priming’ was selectively through increased ROS. Moreover, we showed that this effect was not seen in non-cancerous cells

    Selective Cholinergic Depletion in Medial Septum Leads to Impaired Long Term Potentiation and Glutamatergic Synaptic Currents in the Hippocampus

    Get PDF
    Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning

    A retrospective comparison of venetoclax alone or in combination with an anti-CD20 monoclonal antibody in R/R CLL

    Get PDF
    Venetoclax (VEN) is approved for relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL) as monotherapy (VENmono) or in combination with rituximab. Whether VEN plus anti-CD20 (VENcombo) is superior to VENmono is unknown. We conducted a multicenter, retrospective cohort analysis comparing 321 CLL patients treated with VENmono vs VENcombo across the United States and the United Kingdom. We examined demographics, baseline characteristics, dosing, adverse events, response rates, and outcomes. The primary endpoints were progression-free survival (PFS) and overall survival (OS), estimated by Kaplan-Meier method, in patients treated with VENmono vs VENcombo. Univariate and bivariate analyses were performed with COX regression. Three hundred twenty-one CLL patients were included (3 median prior treatments, 78% prior ibrutinib). The overall response rates (ORRs) were similar (VENmono, 81% ORR, 34% complete remission [CR] vs VENcombo, 84% ORR, 32% CR). With a median follow-up of 13.4 months, no differences in PFS and OS were observed between the groups. In unadjusted analyses, the hazard ratios (HRs) for PFS and OS for VENmono vs VENcombo were HR 1.0 (95% confidence interval [CI], 0.6-1.8; P = .7) and HR 1.2 (95% CI, 0.6-2.3; P = .5), respectively. When adjusting for differences between the cohorts, the addition of an anti-CD20 antibody in combination with VEN did not impact PFS (HR, 1.0; 95% CI, 0.5-2.0; P = .9) or OS (HR, 1.1; 95% CI, 0.4-2.6; P = .8). We demonstrate comparable efficacy between VENmono and VENcombo in a heavily pretreated, high-risk, retrospective cohort, in terms of both response data and survival outcomes. Prospective studies are needed to validate these findings
    corecore