162 research outputs found

    High pressure behavior of CsC8 graphite intercalation compound

    Get PDF
    International audienceThe high pressure phase diagram of CsC8 graphite intercalated compound has been investigated at ambient temperature up to 32 GPa. Combining X-ray and neutron diffraction, Raman and X- ray absorption spectroscopies, we report for the first time that CsC8, when pressurized, undergoes phase transitions around 2.0, 4.8 and 8 GPa. Possible candidate lattice structures and the transition mechanism involved are proposed. We show that the observed transitions involve the structural re- arrangement in the Cs sub-network while the distance between the graphitic layers is continuously reduced at least up to 8.9 GPa. Around 8 GPa, important modifications of signatures of the electronic structure measured by Raman and X-ray absorption spectroscopies evidence the onset of a new transition

    Transgenic Biofortification of the Starchy Staple Cassava (Manihot esculenta) Generates a Novel Sink for Protein

    Get PDF
    Although calorie dense, the starchy, tuberous roots of cassava provide the lowest sources of dietary protein within the major staple food crops (Manihot esculenta Crantz). (Montagnac JA, Davis CR, Tanumihardjo SA. (2009) Compr Rev Food Sci Food Saf 8:181–194). Cassava was genetically modified to express zeolin, a nutritionally balanced storage protein under control of the patatin promoter. Transgenic plants accumulated zeolin within de novo protein bodies localized within the root storage tissues, resulting in total protein levels of 12.5% dry weight within this tissue, a fourfold increase compared to non-transgenic controls. No significant differences were seen for morphological or agronomic characteristics of transgenic and wild type plants in the greenhouse and field trials, but relative to controls, levels of cyanogenic compounds were reduced by up to 55% in both leaf and root tissues of transgenic plants. Data described here represent a proof of concept towards the potential transformation of cassava from a starchy staple, devoid of storage protein, to one capable of supplying inexpensive, plant-based proteins for food, feed and industrial applications

    Molecular Blocking of CD23 Supports Its Role in the Pathogenesis of Arthritis

    Get PDF
    BACKGROUND: CD23 is a differentiation/activation antigen expressed by a variety of hematopoietic and epithelial cells. It can also be detected in soluble forms in biological fluids. Initially known as the low-affinity receptor for immunoglobulin E (Fc epsilonRII), CD23 displays various other physiologic ligands such as CD21, CD11b/c, CD47-vitronectin, and mannose-containing proteins. CD23 mediates numerous immune responses by enhancing IgE-specific antigen presentation, regulating IgE synthesis, influencing cell differentiation and growth of both B- and T-cells. CD23-crosslinking promotes the secretion of pro-inflammatory mediators from human monocytes/macrophages, eosinophils and epithelial cells. Increased CD23 expression is found in patients during allergic reactions and rheumatoid arthritis while its physiopathologic role in these diseases remains to be clarified. METHODOLOGY/PRINCIPAL FINDINGS: We previously generated heptapeptidic countrestructures of human CD23. Based on in vitro studies on healthy and arthritic patients' cells, we showed that CD23-specific peptide addition to human macrophages greatly diminished the transcription of genes encoding inflammatory cytokines. This was also confirmed by significant reduction of mediator levels in cell supernatants. We also show that CD23 peptide decreased IgE-mediated activation of both human and rat CD23(+) macrophages. In vivo studies in rat model of arthritis showed that CD23-blocking peptide ameliorates clinical scores and prevent bone destruction in a dose dependent manner. Ex-vivo analysis of rat macrophages further confirmed the inhibitory effect of peptides on their activation. Taken together our results support the role of CD23 activation and subsequent inflammatory response in arthritis. CONCLUSION: CD23-blocking peptide (p30A) prevents the activation of monocytes/macrophages without cell toxicity. Thus, targeting CD23 by antagonistic peptide decreases inflammatory markers and may have clinical value in the treatment of human arthritis and allergic reactions involving CD23

    The SuperCam Remote Sensing Instrument Suite for Mars 2020

    No full text
    International audienceThe Mars 2020 rover, essentially a structural twin of MSL, is being built to a) characterize the geology and history of a new landing site on Mars, b) find and characterize ancient habitable environments, c) cache samples for eventual return to Earth, and d) demonstrate in-situ production of oxygen needed for human exploration. Remote-sensing instrumentation is needed to support the first three of these goals [1]. The SuperCam instrument meets these needs with a range of instrumentation including the highest-resolution remote imaging on the rover, two different techniques for determining mineralogy , and one technique to provide elemental compositions. All of these techniques are co-boresighted, providing rapid comprehensive characterization. In addition, for targets within 7 meters of the rover the laser shock waves brush away the dust, providing cleaner surfaces for analysis. SuperCam will use an advanced version of the AEGIS robotic target selection software

    High-throughput phenotyping and improvements in breeding cassava for increased carotenoids in the roots

    Full text link
    Past research developed reliable equations to base selections for high ÎČ-carotene on near-infrared spectroscopy (NIR) predictions (100 genotypes d−1) rather than with high-performance liquid chromatography (HPLC) (<10 samples d−1). During recent harvest, CIAT made selections based on NIR predictions for the first time. This innovation produced valuable information that will help other cassava (Manihot esculenta Crantz) breeding programs. A total of 284 samples were analyzed with NIR and HPLC for total ÎČ-carotene (TBC) and by the oven method for dry matter content (DMC). Results indicated that NIR reliably predicted TBC and DMC. In addition, 232 genotypes grown in preliminary yield trials (PYTs) were harvested at 8.5 and 10.5 mo after planting (one plant per genotype and age) and root quality traits analyzed (by NIR only). Repeatability of results at the two ages was excellent, suggesting reliable results from NIR. In contrast to previous reports, age of the plant did not influence carotenoids content in the roots. The availability of a high-throughput NIR protocol allowed comparing results (for the first time) from seedling and cloned plants from the same genotype. Results showed very little relationship for DMC between seedling and cloned plants (R2 = 0.09). There was a much better association for TBC (R2 = 0.48) between seedling and cloned plants. It is postulated that variation in the environmental conditions when seedling and cloned plants (from the same genotype) may be responsible for these weak associations. Important changes in selection strategies have been implemented to overcome problems related to a lengthy harvesting season. (RĂ©sumĂ© d'auteur
    • 

    corecore