5 research outputs found

    Investigating the nature of the INTEGRAL gamma-ray bursts and sub-threshold triggers with Swift follow-up

    Get PDF
    We explore the potential of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) to improve our understanding of the low-fluence regime for explosive transients, such as Gamma-ray Bursts (GRBs). We probe the nature of the so-called 'WEAK' INTEGRAL triggers, when the gamma-ray instruments record intensity spikes that are below the usual STRONG significance thresholds. In a targeted Swift follow-up campaign, we observed 15 WEAK triggers.We find six of these can be classified as GRBs. This includes GRB 150305A, a GRB discovered from our campaign alone. We also identified a source coincident with one trigger, IGRW151019, as a candidate active galactic nucleus.We show that real events such as GRBs exist within the INTEGRAL Burst Alert System (IBAS) WEAK trigger population. A comparison of the fluence distributions of the full INTEGRAL IBAS and Swift-BAT GRB samples showed that the two are similar.We also find correlations between the prompt gamma-ray and X-ray properties of the two samples, supporting previous investigations.We find that both satellites reach similar, low fluence levels regularly, although Swift is more sensitive to short, low-fluence GRBs

    Accessing the population of high-redshift Gamma Ray Bursts

    Get PDF
    Gamma Ray Bursts (GRBs) are a powerful probe of the high-redshift Universe. We present a tool to estimate the detection rate of high-z GRBs by a generic detector with defined energy band and sensitivity. We base this on a population model that reproduces the observed properties of GRBs detected by Swift, Fermi and CGRO in the hard X-ray and γ-ray bands. We provide the expected cumulative distributions of the flux and fluence of simulated GRBs in different energy bands. We show that scintillator detectors, operating at relatively high energies (e.g. tens of keV to the MeV), can detect only the most luminous GRBs at high redshifts due to the link between the peak spectral energy and the luminosity (Epeak–Liso) of GRBs. We show that the best strategy for catching the largest number of high-z bursts is to go softer (e.g. in the soft X-ray band) but with a very high sensitivity. For instance, an imaging soft X-ray detector operating in the 0.2–5 keV energy band reaching a sensitivity, corresponding to a fluence, of ∼10−8 erg cm−2 is expected to detect ≈40 GRBs yr−1 sr−1 at z ≥ 5 (≈3 GRBs yr−1 sr−1 at z ≥ 10). Once high-z GRBs are detected the principal issue is to secure their redshift. To this aim we estimate their NIR afterglow flux at relatively early times and evaluate the effectiveness of following them up and construct usable samples of events with any forthcoming GRB mission dedicated to explore the high-z Universe

    THESEUS: a key space mission for Multi-Messenger Astrophysics

    Full text link
    The recent discovery of the electromagnetic counterpart of the gravitational wave source GW170817, has demonstrated the huge informative power of multi-messenger observations. During the next decade the nascent field of multi-messenger astronomy will mature significantly. In 2030s, third generation gravitational wave detectors will be roughly ten times more sensitive than the current ones. At the same time, neutrino detectors currently upgrading to multi km^3 telescopes, will include a 10 km^3 facility in the Southern hemisphere that is expected to be operational during the thirties. In this review, we describe the most promising high frequency gravitational wave and neutrino sources that will be detected in the next two decades. In this context, we show the important role of the Transient High Energy Sky and Early Universe Surveyor (THESEUS), a mission concept proposed to ESA by a large international collaboration in response to the call for the Cosmic Vision Programme M5 missions. THESEUS aims at providing a substantial advancement in early Universe science as well as playing a fundamental role in multi-messenger and time-domain astorphysics. It will operate in strong sinergy with future gravitational wave and neutrino detectors as well as major ground- and space-based telescopes. This review is an extension of the THESEUS white paper (Amati et al., 2017), in light of the discovery of GW170817/GRB170817A that was announced on October 16th, 2017

    GRB 070724B: The first gamma ray burst localized by SuperAGILE and its Swift X-ray afterglow

    Full text link
    GRB 070724B is the first gamma ray burst localized by SuperAGILE, the hard X-ray monitor aboard the AGILE satellite. The coordinates of the event were published ~19 h after the trigger. The Swift X-Ray Telescope pointed at the SuperAGILE location and detected the X-ray afterglow inside the SuperAGILE error circle. The AGILE gamma-ray Tracker and Minicalorimeter did not detect any significant gamma ray emission associated with GRB 070724B in the MeV and GeV range, neither prompt nor delayed. Searches for the optical afterglow were performed by the Swift UVOT and the Palomar automated 60-inch telescopes, resulting in no significant detection. Similarly, the Very Large Array did not detect any radio afterglow. This is the first GRB event associated with an X-ray afterglow with a firm upper limit in the 100 MeV-30 GeV energy range

    The THESEUS space mission concept: science case, design and expected performances

    No full text
    THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5–1 arcmin localization, an energy band extending from several MeV down to 0.3 keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7 m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift ∼10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late ’20s/early ’30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA)
    corecore