3,079 research outputs found

    Time resolution below 100 ps for the SciTil detector of PANDA employing SiPM

    Full text link
    The barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR in Darmstadt is planned as a scintillator tile hodoscope (SciTil) using 8000 small scintillator tiles. It will provide fast event timing for a software trigger in the otherwise trigger-less data acquisition scheme of PANDA, relative timing in a multiple track event topology as well as additional particle identification in the low momentum region. The goal is to achieve a time resolution of sigma ~ 100 ps. We have conducted measurements using organic scintillators coupled to Silicon Photomultipliers (SiPM). The results are encouraging such that we are confident to reach the required time resolution.Comment: 10 pages, 7 figure

    Criminal Law: Customer’s Permanent Exclusion From Retail Store Due to Prior Shoplifting Arrests Held Enforceable Under Criminal Trespass Statute

    Get PDF
    In interpretive research, trustworthiness has developed to become an important alternative for measuring the value of research and its effects, as well as leading the way of providing for rigour in the research process. The article develops the argument that trustworthiness plays an important role in not only effecting change in a research project’s original setting, but also that trustworthy research contributes toward building a body of knowledge that can play an important role in societal change. An essential aspect in the development of this trustworthiness is its relationship to context. To deal with the multiplicity of meanings of context, we distinguish between contexts at different levels of the research project: the domains of the researcher, the collective, and the individual participant. Furthermore, we argue that depending on the primary purpose associated with the collective learning potential, critical potential, or performative potential of phenomenographic research, developing trustworthiness may take different forms and is related to aspects of pedagogical legitimacy, social legitimacy, and epistemological legitimacy. Trustworthiness in phenomenographic research is further analysed by distinguishing between the internal horizon – the constitution of trustworthiness as it takes place within the research project – and the external horizon, which points to the impact of the phenomenographic project in the world mediated by trustworthiness

    Studies on the maize cold tolerance tests in the Martonvásár phytotron

    Get PDF
    The climatic conditions in Hungary and in the countries to which seed is exported makes the study of maize cold tolerance and constant improvements in the cold tolerance of Martonvásár hybrids especially important. An improvement in the early spring cold tolerance of maize would allow it to be grown in more northern areas with a cooler climate, while on traditional maize-growing areas the profitability of maize production could be improved by earlier sowing, leading to a reduction in transportation and drying costs and in diseases caused by Fusarium sp. The recognition of this fact led Martonvásár researchers to start investigating this subject nearly four decades ago. The phytotron has proved an excellent tool for studying and improving the cold tolerance of maize. The review will give a brief summary of the results achieved in the field of maize cold tolerance in the Martonvásár institute in recent decades

    Parton theory of magnetic polarons: Mesonic resonances and signatures in dynamics

    Full text link
    When a mobile hole is moving in an anti-ferromagnet it distorts the surrounding Neel order and forms a magnetic polaron. Such interplay between hole motion and anti-ferromagnetism is believed to be at the heart of high-Tc superconductivity in cuprates. We study a single hole described by the t-Jz model with Ising interactions between the spins in 2D. This situation can be experimentally realized in quantum gas microscopes. When the hole hopping is much larger than couplings between the spins, we find strong evidence that magnetic polarons can be understood as bound states of two partons, a spinon and a holon carrying spin and charge quantum numbers respectively. We introduce a microscopic parton description which is benchmarked by comparison with results from advanced numerical simulations. Using this parton theory, we predict a series of excited states that are invisible in the spectral function and correspond to rotational excitations of the spinon-holon pair. This is reminiscent of mesonic resonances observed in high-energy physics, which can be understood as rotating quark antiquark pairs. We also apply the strong coupling parton theory to study far-from equilibrium dynamics of magnetic polarons observable in current experiments with ultracold atoms. Our work supports earlier ideas that partons in a confining phase of matter represent a useful paradigm in condensed-matter physics and in the context of high-Tc superconductivity. While direct observations of spinons and holons in real space are impossible in traditional solid-state experiments, quantum gas microscopes provide a new experimental toolbox. We show that, using this platform, direct observations of partons in and out-of equilibrium are possible. Extensions of our approach to the t-J model are also discussed. Our predictions in this case are relevant to current experiments with quantum gas microscopes for ultracold atoms.Comment: 30 pages, 4 appendices, 26 figure

    Multiple conducting carriers generated in LaAlO3/SrTiO3 heterostructures

    Get PDF
    We have found that there is more than one type of conducting carriers generated in LaAlO3/SrTiO3 heterostructures by comparing the sheet carrier density and mobility from optical transmission spectroscopy with those from dc-transport measurements. When multiple types of carriers exist, optical characterization dominantly reflects the contribution from the high-density carriers whereas dc-transport measurements may exaggerate the contribution of the high-mobility carriers even though they are present at low-density. Since the low-temperature mobilities determined by dc-transport in the LaAlO3/SrTiO3 heterostructures are much higher than those extracted by optical method, we attribute the origin of high-mobility transport to the low-density conducting carriers.Comment: 3 figures, supplemental materia
    • …
    corecore