129 research outputs found

    Age-related mobile digital divide in citizen science: the CSMON-LIFE experience

    Get PDF
    The amount of available Citizen Science data has increased significantly in the last two decades and has been used in several biogeographic studies as well. Citizen Science data are mostly collected through digital platforms, and especially mobile Apps. While the adoption of novel Information and Communications Technology (ICT) approaches potentially allow for a wider participation, recent studies have highlighted that the ability of making an intensive use of smartphones and mobile apps could decrease with users’ age. At the same time, data quality and commitment of volunteers in citizen science activities often increases with the age of volunteers. During the CSMON-LIFE (Citizen Science MONitoring) project volunteers provided their year of birth, thus allowing for inferences on the relation between age and data quality and retention rate. In this manuscript, a further investigation is carried out for understanding the potential effect of the digital gap that exists especially between young adults and old adults on participation to citizen science activities. In the case of CSMON-LIFE, older age classes are under-represented, if compared to the overall Italian population. While the difference cannot be with absolute certainty ascribed to one factor alone, it can be hypothesized that a relevant contribution to the limited participation of old adults could be due to the intensive adoption of mobile Apps. Furthermore, it seems that choice of mobile devices among volunteers is quite different from that made by the average population based on availability in the Italian market, possibly evidencing an overall higher education of citizen scientists. Therefore, it can be said that digital divide can have a negative effect on the participation of volunteers belonging to the older age classes, even if this effect will probably slowly disappear in the future

    Le Nuove segnalazioni floristiche italiane: uno spazio comune per i floristi italiani

    Get PDF
    Storia della rubrica “Segnalazioni Floristiche Italiane” dal 1978 ad oggi e presentazione della relativa sezione nel Notiziario della Società Botanica Italiana

    Distributional pattern of Sardinian orchids under a climate change scenario

    Get PDF
    The Mediterranean is one of the major biodiversity hotspots of the world. It has been identified as the “core” of the speciation process for many groups of organisms. It hosts an impressive number of species, many of which are classified as endangered taxa. Climate change in such a diverse context could heavily influence community composition, reducing ecosystems resistance and resilience. This study aims at depicting the distribution of nine orchid species in the island of Sardinia (Italy), and at forecasting their future distribution in consequence of climate change. The models were produced by following an “ensemble” approach. We analysed present and future (2070) niche for the nine species, using Land Use and Soil Type, as well as 8 bioclimatic variables as predictors, selected because of their influence on the fitness of these orchids. Climate change in the next years, at Mediterranean latitudes, is predicted to results mainly in an increase of temperature and a decrease of precipitation. In 2070, the general trend for almost all modelled taxa is the widening of the suitable areas. However, not always the newly gained areas have high probability of presence. A correct interpretation of environmental changes is needed for developing effective conservation strategies

    Biogeography of orchids and their pollination syndromes in small Mediterranean islands

    Get PDF
    Aims Despite the research on orchid in insular conditions, few studies are focused on the spatial distribution of their reproductive syndromes across complex insular systems. By using island species-area relationships (ISAR), we explore orchid biogeography in the Central Western-Mediterranean islands. In this study, we aim to investigate variation in ISARs using orchid pollination mechanisms as proxies to establish permanent populations explaining how the c and z parameters of ISARs vary among island types and pollination strategies and defining the most influential factors in shaping orchids' distribution.LocationMediterranean Basin.TaxonOrchidaceae. MethodsChecklist of native orchids was obtained for 112 islands of Central-Western Mediterranean Basin. The Arrhenius power function (S=c center dot AzS=cAz S=c\cdotp {A}z ) was used to fit ISARs for the total number of orchids as well as for functional groups defined by the pollination strategies, across different island types. We used GLM to investigate the relation between pollination syndromes with area and isolation as well as elevation, island origin, taxa richness of the source area and habitat diversity.ResultsWe found that ISARs differ between continental and volcanic islands depending on isolation. The z-value was found to be higher for more specialized strategies while the c-value increases from autogamy to allogamy, supporting the role of these two parameters in understanding distributional dynamics. Distance from the mainland is a negative predictor for all the strategies except when deception is decoupled; island area is a positive predictor only for allogamic, deceptive and food deceptive strategies, while habitat diversity is a positive predictor for allogamic, rewarding and deceptive strategies. Main Conclusions Pollination syndromes contribute in explaining the distribution of orchids in insular conditions. Furthermore, we identified differences in ISARs across pollination syndromes in which the intercept increases when the pollination shifts from a generalist to a more specialized one

    The Dolichens database: the lichen biota of the Dolomites

    Get PDF
    The Dolichens project provides the first dynamic inventory of the lichens of the Dolomites (Eastern Alps, Italy). Occurrence records were retrieved from published and grey literature, reviewed herbaria, unpublished records collected by the authors, and new sampling campaigns, covering a period from 1820 to 2022. Currently, the dataset contains 56,251 records, referring to 1,719 infrageneric taxa, reported from 1820 to 2022, from hilly to nival belts, and corresponding to about half of the species known for the whole Alpine chain. Amongst them, 98% are georeferenced, although most of them were georeferenced a posteriori. The dataset is available through the Global Biodiversity Information Facility (GBIF; https://www.gbif.org/es/dataset/cea3ee2c-1ff1-4f8e-bb37-a99600cb4134) and through the Dolichens website (https://italic.units.it/dolichens/). We expect that this open floristic inventory will contribute to tracking the lichen diversity of the Dolomites over the past 200 years, and providing the basis for future taxonomic, biogeographical, and ecological studies

    Drought-induced dieback of Pinus nigra: A tale of hydraulic failure and carbon starvation

    Get PDF
    Ongoing climate change is apparently increasing tree mortality rates, and understanding mechanisms of drought-induced tree decline can improve mortality projections. Differential drought impact on conspecific individuals within a population has been reported, but no clear mechanistic explanation for this pattern has emerged. Following a severe drought (summer 2012), we monitored over a 3-year period healthy (H) and declining (D) Pinus nigra trees co-occurring in a karstic woodland to highlight eventual individual-specific physiological differences underlying differential canopy dieback. We investigated differences in water and carbon metabolism, and xylem anatomy as a function of crown health status, as well as eventual genotypic basis of contrasting drought responses. H and D trees exploited the same water pools and relied on similar hydraulic strategies to cope with drought stress. Genetic analyses did not highlight differences between groups in terms of geographical provenance. Hydraulic and anatomical analyses showed conflicting results. The hydraulic tracheid diameter and theoretical hydraulic conductivity were similar, but D trees were characterized by lower water transport efficiency, greater vulnerability to xylem conduit implosion and reduced carbohydrate stores. Our results suggest that extreme drought events can have different impacts on conspecific individuals, with differential vulnerability to xylem embolism likely playing a major role in setting the fate of trees under climate change

    FlorItaly-the portal to the flora of Italy

    Get PDF
    Digital data concerning the flora of Italy are largely fragmented among different resources hosted on different platforms, and often with different data standards, which are neither connected by a common access point, nor by web services, thus constituting a relevant obstacle to data access and usage. Taxonomic incongruences add a further complication. This paper describes "FlorItaly", an online information system which allows to access and query updated information on the checklist of the flora of Italy, aiming at becoming an aggregator for Italian botanical resources. "FlorItaly" was developed in a collaborative effort by more than 50 taxonomists, with the support of the Italian Botanical Society, and of Project "Dryades" (University of Trieste), to provide a better and reliable organization of botanical knowledge in Italy, as well as a relevant simplification for data retrieval, and a further stimulus towards a more collaborative approach in botanical research

    Cross Taxon Congruence Between Lichens and Vascular Plants in a Riparian Ecosystem

    Get PDF
    Despite that congruence across taxa has been proved as an effective tool to provide insights into the processes structuring the spatial distribution of taxonomic groups and is useful for conservation purposes, only a few studies on cross-taxon congruence focused on freshwater ecosystems and on the relations among vascular plants and lichens. We hypothesized here that, since vascular plants could be good surrogates of lichens in these ecosystems, it would be possible to assess the overall biodiversity of riparian habitats using plant data only. In this frame, we explored the relationship between (a) species richness and (b) community composition of plants and lichens in a wetland area located in central Italy to (i) assess whether vascular plants are good surrogates of lichens and (ii) to test the congruence of patterns of species richness and composition among plants and lichens along an ecological gradient. The general performance of plant species richness per se, as a biodiversity surrogate of lichens, had poor results. Nonetheless, the congruence in compositional patterns between lichens and vascular plants varied across habitats and was influenced by the characteristics of the vegetation. In general, we discussed how the strength of the studied relationships could be influenced by characteristics of the data (presence/absence vs. abundance), by the spatial scale, and by the features of the habitats. Overall, our data confirm that the more diverse and structurally complex the vegetation is, the more diverse are the lichen communities it hosts

    Plant species richness hotspots and related drivers across spatial scales in small Mediterranean islands

    Get PDF
    Small islands represent a common feature in the Mediterranean and host a significant fraction of its biodiversity. However, the distribution of plant species richness across spatial scales—from local communities (alpha) to whole islands (gamma)—is largely unknown, and so is the influence of environmental, geographical, and topographical factors. By building upon classic biogeographic theory, we used the species–area relationship and about 4500 vegetation plots in 54 Central Mediterranean small islands to identify hotspots of plant species richness and the underlying spatial determinants across scales. To do so, we fitted and averaged eight species–area models on gamma and alpha richness against island area and plot size, respectively. Based on positive deviations from the fitted curves, we identified 12 islands as cross-scale hotspots. These islands encompassed around 70% of species and habitat richness, as well as almost 50% of the rarest species in the data set, while occupying less than 40% of the total island surface. By fitting generalized linear mixed models, we found that gamma richness was mainly explained by island area and was weakly related to mean annual temperature (positively) and annual precipitation (negatively). As for alpha richness, after accounting for the idiosyncratic effect of habitats and islands, plot size and gamma richness remained the only significant predictors, showing a positive relationship. This work contributes to the understanding of the patterns and drivers of plant diversity in Central Mediterranean small islands and outlines a useful methodology for the prioritization of conservation efforts

    Probabilistic and preferential sampling approaches offer integrated perspectives of Italian forest diversity

    Get PDF
    Aim: Assessing the performances of different sampling approaches for documenting community diversity may help to identify optimal sampling efforts and strategies, and to enhance conservation and monitoring planning. Here, we used two data sets based on probabilistic and preferential sampling schemes of Italian forest vegetation to analyze the multifaceted performances of the two approaches across three major forest types at a large scale. Location: Italy. Methods: We pooled 804 probabilistic and 16,259 preferential forest plots as samples of vascular plant diversity across the country. We balanced the two data sets in terms of sizes, plot size, geographical position, and vegetation types. For each of the two data sets, 1000 subsets of 201 random plots were compared by calculating the shared and exclusive indicator species, their overlap in the multivariate space, and the areas encompassed by spatially-constrained rarefaction curves. We then calculated an index of performance using the ratio between the additional and total information collected by each sampling approach. The performances were tested and evaluated across the three major forest types. Results: The probabilistic approach performed better in estimating species richness and diversity of species assemblages, but did not detect other components of the regional diversity, such as azonal forests. The preferential approach outperformed the probabilistic approach in detecting forest-specialist species and plant diversity hotspots. Conclusions: Using a novel workflow based on vegetation-plot exclusivities and commonalities, our study suggests probabilistic and preferential sampling approaches are to be used in combination for better conservation and monitor planning purposes to detect multiple aspects of plant community diversity. Our findings can assist the implementation of national conservation planning and large-scale monitoring of biodiversity
    corecore