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Abstract
Aim: Assessing the performances of different sampling approaches for document-
ing community diversity may help to identify optimal sampling efforts and strategies, 
and to enhance conservation and monitoring planning. Here, we used two data sets 
based on probabilistic and preferential sampling schemes of Italian forest vegetation 
to analyze the multifaceted performances of the two approaches across three major 
forest types at a large scale.
Location: Italy.
Methods: We pooled 804 probabilistic and 16,259 preferential forest plots as sam-
ples of vascular plant diversity across the country. We balanced the two data sets in 
terms of sizes, plot size, geographical position, and vegetation types. For each of the 
two data sets, 1000 subsets of 201 random plots were compared by calculating the 
shared and exclusive indicator species, their overlap in the multivariate space, and the 
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1  |  INTRODUC TION

Human-induced environmental changes are affecting the distribu-
tion, structure, and functioning of ecosystems, resulting in a global 
biodiversity crisis with evident impact on our society (Cardinale 
et al.,  2012; Pecl et al.,  2017). While international conservation 
programs strengthen protection goals (COM,  2020), the scientific 
community provides data, measurements, and evaluations of the 
biodiversity crisis from local to global scales (IPBES, 2019). Large 
collections of field observations at different spatio-temporal scales 
have thus become an essential tool to monitor, model, and predict 
the impact of global changes on natural ecosystems (Schmeller 
et al.,  2015; Staude et al.,  2020). Monitoring agencies need cost-
effective sampling approaches to accomplish national conservation 
strategies and programs. In this context, the performance of a sam-
pling approach can be evaluated based on the efficiency in collecting 
information. Useful approaches should detect multiple aspects of 
the spatio-temporal patterns of biodiversity (Chiarucci et al., 2011; 
Mihoub et al., 2017; Schmidt-Traub, 2021).

Currently, the geographical extent of plant diversity databases 
ranges from the regional to the global scale, including different 
types of diversity observations, such as species records and co-
occurrence data (Chytrý et al., 2016; Sabatini, Lenoir, et al., 2021). 
One advantage of this latter type of data is to allow accurate es-
timations of local diversity due to the recording of complete — or 
almost complete — species lists within sampling units, e.g. a vege-
tation plot (Franklin et al., 2017). Co-occurrence data can also be 
transformed to single-species records, while species assemblages 

derived from aggregates of for example herbarium specimens, 
could lead to spurious results (Bottin et al.,  2020). Herbarium 
specimens have shown a bias towards rare but colorful and char-
ismatic species (Troudet et al.,  2017; Adamo et al.,  2021) when 
compared with aggregates of vegetation plot databases (Bottin 
et al., 2020). Estimates of beta diversity across large areas obtained 
by assembled plot data are similar to those obtained by species lists 
(Chiarucci et al., 2021), suggesting that the standardization of large 
vegetation plot databases allows sufficient representation of veg-
etation conditions, modeling and predicting biodiversity patterns 
at different spatio-temporal scales (Staude et al.,  2020; Laughlin 
et al., 2021; Testolin et al., 2021).

Notwithstanding the amount of aggregated historical data, bio-
diversity monitoring requires continuous and expensive sampling 
efforts to detect changes in species diversity. The long tradition of 
vegetation surveys in Europe has allowed the implementation of 
different sampling approaches across the continent. Traditionally, 
preferential (opportunistic) sampling has been widely employed in 
Europe. This approach collects vegetation plots at environmen-
tally homogeneous sites selected on the basis of expert selection 
and using variable numbers and grain sizes of plots to character-
ize plant communities (Braun-Blanquet, 1964). Despite some lim-
itations in the use of preferentially collected data for inferential 
purposes (Chiarucci, 2007; Roleček et al., 2007), this approach is 
suitable for the assessment of total species richness of a given 
study area, as well as to detect rare vegetation types character-
ized by habitat specialist or alien species (Michalcová et al., 2011; 
Speak et al., 2018). Other studies have suggested the advantages 

areas encompassed by spatially-constrained rarefaction curves. We then calculated 
an index of performance using the ratio between the additional and total information 
collected by each sampling approach. The performances were tested and evaluated 
across the three major forest types.
Results: The probabilistic approach performed better in estimating species richness 
and diversity of species assemblages, but did not detect other components of the 
regional diversity, such as azonal forests. The preferential approach outperformed 
the probabilistic approach in detecting forest-specialist species and plant diversity 
hotspots.
Conclusions: Using a novel workflow based on vegetation-plot exclusivities and com-
monalities, our study suggests probabilistic and preferential sampling approaches are 
to be used in combination for better conservation and monitor planning purposes 
to detect multiple aspects of plant community diversity. Our findings can assist the 
implementation of national conservation planning and large-scale monitoring of 
biodiversity.

K E Y W O R D S
biodiversity, co-occurrence data, detrended correspondence analysis, indicator species 
analysis, regional survey, spatially constrained rarefaction curve, temperate forests, vegetation 
database, zonal vegetation
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of probabilistic approaches, in which plots are placed according to 
a survey design to produce robust inferences on the abundance 
and distribution of species and vegetation types (Michalcová 
et al., 2011; Swacha et al., 2017).

The combination of probabilistic and preferential sampling ap-
proaches may detect different facets of plant community diversity, 
revealing both common and rare species distributions and abun-
dances (Roleček et al.,  2007). However, despite the urgent need 
for improving sampling schemes for plant diversity monitoring, the 
two approaches have been compared only at the landscape scale 
(Michalcová et al., 2011; Swacha et al., 2017; Speak et al., 2018), thus 
neglecting environmental and biogeographical factors which drive 
plant community diversity patterns. Since probabilistic data sets at 
the regional scale are difficult to retrieve, extensive diversity data 
sets are usually obtained by aggregating local data sets based on 
different sampling schemes. In turn, aggregated data sets suffer 
from biases in data distribution with respect to the most frequent 
vegetation types in a defined geographic area (Roleček et al., 2007). 
To efficiently monitor plant diversity and improve surveys at broad 
spatial scales, standardized measurements of performances of data 
sets could shed light on how to efficiently integrate both probabilis-
tic and preferential data.

In this study, we evaluated the performance of probabilistic and 
preferential sampling approaches for estimating different facets of 
forest diversity at the country scale. Using a novel workflow based 
on vegetation plot exclusivities and commonalities, we compared 
the two approaches in terms of representing: (i) habitat specialist 
composition, (ii) diversity of species assemblages, and (iii) species 
diversity estimates. We thus evaluated the performance of the 
two sampling approaches based on the additional information with 
respect to the shared information collected by each sampling ap-
proach, weighted by their sum. By combining vegetation data sets 
from across Italy, we aim to discuss the importance of collecting and 
combining spatial observations to develop biodiversity monitoring 
programs for national conservation planning (Hochkirch et al., 2021; 
Schmidt-Traub, 2021).

2  |  METHODS

2.1  |  Study area

Italian forests cover 90,851  km2 (Gasparini et al.,  2022). The high 
variation of the study area in latitude (from 35° to 47°), elevation 
(from 0 m to 4809 m  a.s.l., with forest vegetation up to ~1700 to 
1900 m  a.s.l.), geomorphological heterogeneity (Fredi & Palmieri 
Lupia,  2017), and climatic conditions (from subtropical to cold-
temperate climate; Fratianni & Acquaotta,  2017) is mirrored by 
a high diversity of forest types (Chiarucci et al.,  2019; Agrillo 
et al., 2021). The main vegetation forest types in the study area are 
broad-leaved evergreen and deciduous forests of warm-temperate 
climate, broad-leaved deciduous forests of cool-temperate climate, 
and needle-leaved forests of cold-temperate climate (Dinerstein 
et al., 2017). According to the Italian forest inventory (INFC, 2015), 
“forests with high trees” cover 89,567 km2, of which 17% is repre-
sented by high-elevation coniferous forests, 67% by broad-leaved 
deciduous forests, 13% by Mediterranean evergreen forests, and 3% 
by riparian forests.

2.2  |  General workflow

We compared a single vegetation plot data set (hereafter, “proba-
bilistic data set”) with a larger aggregate of vegetation plot data 
sets (hereafter, “preferential data set”), both representing vascu-
lar  plant  diversity  of  Italian forests across the whole country (see 
the next paragraph). The vegetation plots of the probabilistic data 
set were collected according to a formal and reproducible scheme, 
while the vegetation plots of the preferential data set were obtained 
by aggregating preferentially collected data. We developed a novel 
workflow based on the partitioning of the performance into shared 
and exclusive information emerging from each data set (Figure 1). 
While the shared information was defined as the portion collected 
by both data sets, the exclusive information differentiated a data set 

F I G U R E  1 Graphical conceptualization 
of the methodology used to measure 
the performance of the two sampling 
approaches. The shared and 
exclusive biodiversity information 
calculated as percentages and emerging 
from the data sets highlights similarities, 
differences, and the overall performance 
of the two sampling approaches. The 
index of performance evaluates the 
additional information with respect to the 
common information collected by each 
sampling approach, weighted by their 
sum.
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with respect to the others. The sum of these two components cor-
responded to the overall, or joint, information of the probabilistic 
and preferential approaches —  that is, the total size or area of in-
formation retained. A heuristic index measuring the performance of 
each sampling approach was then calculated as the ratio of the dif-
ference between exclusive and shared information divided by their 
sum (Figure  1). Since we measured shared and exclusive informa-
tion as proportions, the index ranges between −1 and 1. The index 
was calculated on randomly re-sampled and balanced subsets of the 
probabilistic and preferential data sets (Figure  2), as described in 
the following subsections. We evaluated multiple aspects of plant 
diversity retained by each data set using three different ecological 
analyses (Figure  2). We then applied this approach to three zonal 
forest types for evaluating widely distributed and rare plant com-
munities (Figure 3).

2.3  |  Probabilistic data set

The probabilistic data set of Italian forest vegetation consisted of 
plots collected in the framework of the BIOSOIL project (Hiederer & 
Durrant, 2010). It was obtained by extracting a probabilistic sample 
of plant communities based on a 16 km × 16 km grid superimposed 
on the whole Italian country (Level I network; Lorenz et al., 2002; 
Forests ICP, 2016; Chiarucci et al., 2019). Grid corners were selected 
if a forest patch larger than 0.01 km2 occurred therein. Hence, a sta-
tistically representative sample of 261 sites was considered for field 

observations of forest ecosystems (Petriccione & Cindolo,  2006). 
Overall, 60 sites were excluded by ground surveys because they 
were not forests, inaccessible, or extremely disturbed (e.g. recent 
tree harvesting, cattle rest areas, ski slopes). This resulted in a final 
sample of 201 circular sampling sites (radius 25.24 m; sampled area 
2000 m2), in which four 10 m × 10 m plots were located at random 
distances from the center, along the main cardinal directions. In 
each plot, plant species identities and their relative cover were re-
corded (Canullo et al.,  2013; Ferretti et al.,  2013). Coordinates of 
sampling site centers were extracted from GPS devices with a posi-
tional uncertainty below 10 m. The field campaign was carried out 
in spring–summer 2007, employing 10 teams of two surveyors each, 
after a common training and calibration exercise following Quality 
Assurance guidelines (Allegrini et al.,  2009; Canullo et al.,  2016). 
Taxa identified at the genus level were excluded from the data set. 
Thus, a final data set containing plant cover values for 1,099 spe-
cies observed in 804 plots distributed over 201 sites was obtained. 
Taxonomy was standardized according to the Italian flora (Pignatti 
et al., 2017–2019).

2.4  |  Preferential data set

The preferential data set of Italian forest vegetation consisted of plot 
observations aggregated from four databases (see Appendix  S1). 
The data set underwent a filtering process on an initial set of 51,529 
plots. We selected plots with: (i) an estimated positional uncertainty 

F I G U R E  2 Graphical conceptualization 
of the workflow adopted to balance and 
analyze the probabilistic and preferential 
data sets. To balance data set sizes, we 
randomly re-sampled plots considering 
sizes, plot sizes, geographic distribution 
and vegetation types. To consider 
different aspects of plant community 
diversity, we applied the conceptual 
model to three ecological analyses: 
Indicator Species Analysis, Detrended 
Correspondence Analysis, and spatially-
constrained rarefaction curves.
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below 1000 m; (ii) cumulative tree species cover above 30%; and 
(iii) all taxa identified at the species level. Duplicated plots were re-
moved. Taxonomy was standardized according to the Italian flora 
(Pignatti et al., 2017–2019). The final data set included 16,259 plots 
containing plant cover values for 2,948 species, including plots of 
different sizes (17% of the plots had no information about plot size). 
The preferential data set resulted in a total of 946 geographically 
distinct locations identified in a 16 km × 16 km cell grid.

2.5  |  Environmental variables

To characterize each plot in terms of environmental variables, we ex-
tracted elevation (European Union, 2021) and all the 19 bioclimatic 
variables of the Chelsa data set at 1 ArcSec resolution (~1000 m at 
the equator; Karger et al., 2017).

2.6  |  Forest vegetation types

For the sole purpose of defining major vegetation types in Italian 
forests, we used the probabilistic data set at the site level (aggre-
gation of four 100-m2 plots) by square-root-transforming species 
cover values and performing a multivariate regression tree with 
environmental variables (De'ath & Fabricius, 2002). This tech-
nique identifies the most probable vegetation type given a certain 
climate, by concurrently accounting for species co-occurrences 
and environmental variables (Borcard et al., 2011). Clustering the 
probabilistic data set at the site level instead of the plot level (201 
sites × 4 plots) allowed the assignment of the four plots forming 
sites to a unique vegetation type. Because of the heterogeneous 
sources of the preferential data set, we preferred to use the proba-
bilistic data set for the definition of vegetation types due to its sta-
tistical representativeness of the distribution of forest vegetation 

F I G U R E  3 Graphical summary of the differences between probabilistic and preferential data sets in characterizing Italian forest types. 
We obtained forest vegetation types using a multivariate regression tree on the probabilistic data set and assignment of the preferential 
plots with a noise clustering technique. The azonal vegetation type occurs only in the preferential data set. We show the geographical 
distribution and the frequency of clustered co-occurrence data sets (804 probabilistic and 16,259 preferential plots), the first 10 significant 
woody indicator species (p < 0.01) ranked by their association values (phi coefficient), the density plots and mean values of environmental 
variables for the two data sets. The dashed density plot and the bold character in the mean values represent the Italian forests.
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in the study area. After checking for multicollinearity among en-
vironmental variables with Variation Inflation Factor analysis (VIF, 
Zuur et al., 2010) using a threshold of 10, we used eight predictors 
in the model — i.e. elevation, minimum temperatures of the driest 
and wettest quarter, temperature seasonality (the standard devia-
tion of the monthly temperatures), isothermality (the ratio of di-
urnal variation to annual variation in temperatures), precipitation 
seasonality (the standard deviation of the monthly precipitation 
estimates expressed as a percentage of the mean of those esti-
mates), and precipitations of the wettest month and of the cold-
est quarter (Karger et al., 2017). We characterized and named the 
three obtained clusters using their geographical and environmen-
tal distributions along with their list of indicator species resulting 
from the Indicator Species Analysis (De Cáceres et al., 2010). The 
three clusters were considered as mean ecological prototypes rep-
resentative of Italian zonal forest types: (i) the warm-temperate 
forest, dominated by evergreen and deciduous broad-leaved 
trees (109 sites, 54%); (ii) the cool-temperate forest, dominated 
by deciduous broad-leaved trees (56 sites, 28%); and (iii) the cold-
temperate forest, dominated by needle-leaved trees (36 sites, 
18%). Then, chord-transformed preferential plots were assigned 
to zonal forest types based on their chord distance from proto-
type centroids expressed as species composition in a multivariate 
space, namely by using noise clustering (De Cáceres et al., 2017). 
By setting a threshold distance for plot assignment, we excluded 
outlier plots from the probabilistic prototypes  —  meaning 12% 
of the data set, composed mainly of azonal forest stands such as 
riparian types and coastal areas. Most of the preferential plots 
were assigned to a zonal vegetation type (64% warm-temperate; 
19% cool-temperate; 5% cold-temperate). A detailed description 
of the methodology is reported in Appendix S2, while details on 
the characterization of forest types are graphically summarized in 
Figure 3. The environmental characterization of the two data sets 
was compared with the whole distribution of Italian forests pro-
vided by Copernicus Land Monitoring Service products upscaled 
at 1000-m spatial resolution (Figure  3; European Union,  2021). 
The area occupied by each forest type was obtained as a predic-
tion of the multivariate regression tree model performed on envi-
ronmental variables. A complete list of indicator species sorted by 
life forms and ordered by fidelity values to forest vegetation types 
is provided in Appendix S3. Specifically, we calculated indicator 
values for preferential plots: (i) regardless of plot size; (ii) with a 
plot size of 100 m2 except for cold-temperate forest (plots with 
sizes ranging between 100 and 300 m2); and (iii) with plot sizes 
ranging between 100 and 500 m2.

2.7  |  Performance measurement

To compare the performance of probabilistic and preferential data 
sets, considering their discrepancy in plot numbers, we sampled 
1000 different subsets of 201 plots for each data set. Plots were 
randomly sampled at the site level. While sites for the probabilistic 

data set were defined in the sampling design as random forested 
corners of a 16 km × 16 km grid, for the preferential data set we 
simulated a similar re-sampling design selecting random plots lo-
cated within cells of the 16 km × 16 km grid. Thus, the probabil-
istic subsets were aggregated selecting a random plot for each 
of the 201 sites. In the preferential plot subsets, we maintained 
proportions among vegetation types observed with the probabil-
istic data set — meaning 109 plots for the warm-temperate forest, 
56 plots for the cool-temperate forest, and 36 plots for the cold-
temperate forest. To standardize plot sizes between the two data 
sets, we selected only preferential 100-m2 plots, except for cold-
temperate forest for which we selected plots with sizes ranging 
between 100 and 300 m2. To evaluate the effect of plot size on 
the performance measurements, we repeated the analyses also 
using 1000 preferential subsets of plots with sizes ranging be-
tween 100 and 500 m2.

For each of the 1000 subsets of the two data sets, the overall 
information on habitat specialist species was quantified by sum-
ming the relative number of shared and exclusive indicator species 
for each data set (De Cáceres et al., 2010). We used the “multipatt” 
function of the indicspecies R package (De Cáceres et al., 2020) with 
999 permutations and counted those species with a significant phi 
coefficient (p value <0.01). This analysis allowed us to compare clus-
ters of unequal sizes (Tichý & Chytrý, 2006).

Overall information on species assemblage diversity was calcu-
lated by summing the shared and exclusive occupied areas of each 
data set over the two first axes of Detrended Correspondence 
Analysis (DCA). We used the “decorana” function of the vegan  R 
package (Oksanen et al.,  2020). DCA axes were used to estimate 
species turnover and summarize patterns of variation among plant 
assemblages (Eilertsen et al., 1990).

Overall information on species diversity estimates among plots 
was calculated by summing the relative shared and exclusive areas 
encompassed by spatially-constrained rarefaction curves for each 
data set (Chiarucci et al.,  2009). Spatially-constrained rarefaction 
allowed accounting for the spatial arrangement of plots to calcu-
late rarefaction curves by moving toward geographically close plots 
(Chiarucci et al., 2009). We thus used the “rare_alpha” function of 
the RarefyR package (Thouverai et al., 2021). For the estimation of 
the exclusive information of each data set, we excluded the relative 
shared part of information.

The index of performance for each data set was then calculated 
based on the obtained percentage measurements of the exclusive 
and shared information in the three ecological analyses. Positive val-
ues of the index correspond to a good performance of the sampling 
approach which collects more exclusive than shared information. On 
the other hand, negative values mean that the shared information 
collected by the approach is larger than the exclusive information. 
To compare the performances of the probabilistic and preferential 
approaches, the index was tested for significance using the non-
parametric Mann–Whitney test.

All the analyses were performed using QGIS version 3.16 (QGIS 
Development Team, 2020) and R version 4.1.2 (R Core Team, 2022).
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3  |  RESULTS

The probabilistic and preferential data sets showed a different spe-
cies composition and environmental characterization of the three 
zonal forest types, especially in the warm forest type (Figure  3, 
Appendix S3). The probabilistic data set showed an environmental 
characterization closer to the whole forest distribution provided 
by Copernicus Land Monitoring Service (European Union, 2021) in 
comparison with the preferential data set. The preferential data set 
showed more plots at low elevation in the warm-temperate and cold-
temperate forests. The preferential data set also showed a high num-
ber of woody habitat specialist species in the cool-temperate forest 
type.

Regarding the three ecological analyses we performed, 
namely the Indicator Species Analysis, the DCA, and the spatially-
constrained rarefaction curves, we found significantly different per-
formances for the two data sets across the zonal forest types. We 
found concordant results for the heterogeneous and larger plot-size 
aggregated data set (Appendix S4).

The probabilistic data set showed the lowest values for the 
overall and exclusive information in the habitat specialist species 
(Figure  4a). The preferential data set outperformed the probabi-
listic data set for the whole data set, and for the warm- and cold-
temperate forests types (Figure 5a). For the cool-temperate forest, 
the two data sets performed similarly instead.

The probabilistic data set showed the highest values for the overall and 
exclusive information on the diversity of species assemblages (Figure 4b). 
The probabilistic data set outperformed the preferential data set for both 
the cool- and cold-temperate forests, but it showed negative performance 
for the whole data set and warm-temperate forest (Figure 5b).

The probabilistic data set showed the lowest values for the over-
all and exclusive information on species richness estimates in the 
whole data set and warm-temperate forests, but the highest values 
in the cool- and cold-temperate forests (Figure 4c). We found lower 
performances for the probabilistic data set in the whole data set and 
in the warm-temperate forest (Figure 5c). To the contrary, the prob-
abilistic data set outperformed the preferential data set in the cool- 
and cold-temperate forests.

4  |  DISCUSSION

We provide a comparison of multifaceted performance between 
probabilistic and preferential sampling approaches in evaluating 
plant community diversity at a large scale. We confirmed our find-
ings considering both similar and larger plot sizes for preferential 
plots with respect to probabilistic plots, suggesting plot size as a 
weak factor driving the analyzed patterns. The performance was 
assessed among three zonal forest types obtained by numerical 
clustering on the probabilistic data set and subsequent assignment 
of the forest types to preferential plots based on the species com-
position. This clustering approach allowed grouping of the most 
frequent forest communities, which resulted to be the zonal forest 

types. To the contrary, basing the clustering on a large and hetero-
geneous aggregate of plots, such as the preferential data set, might 
emphasize uncommon vegetation types which would make our 
comparison unstable. In general, the probabilistic approach failed 
in detecting the regional (gamma) diversity, by neglecting azonal 
forests — meaning riparian and coastal forest types. The data sets 
analyzed here were differentiated by habitat-specialist species and 
environmental distribution, with the preferential data set having 
more plots at warmer sites. The preferential approach also outper-
formed the probabilistic approach in detecting assemblages rich 
in habitat specialists. To the contrary, the probabilistic data set 
showed the higher performance in detecting diversity of species 
assemblages and spatially assembled regional species richness es-
timates. Notwithstanding this, in the given zonal forest types, the 
two sampling approaches deviate from this general finding.

4.1  |  The probabilistic approach

Given an equal sampling effort, a systematic approach applied to 
forest areas represented by the probabilistic data set performed 
better in detecting richness of species and diversity of species 
assemblages at the national scale compared to a heterogeneous 
aggregate of preferential vegetation plot data sets. According to 
Botta-Dukát et al. (2007), this result may be due to the sampling 
of degraded forest stands in which species typical of species-rich 
open habitats tend to occur. Degraded sites are often avoided 
during preferential vegetation sampling surveys because of their 
mixed species composition which may hardly be assigned to tar-
geted habitat types (e.g. Chytrý et al., 2020). The exception to this 
finding is represented by the warm-temperate forests in which the 
two approaches performed similarly. This is probably due to a bias 
of the preferential data set toward sites with warm-temperate for-
est types occurring at lower elevations with higher temperatures, 
in which evergreen forest stands occur. This bias is confirmed by 
the occurrence of evergreen species as woody habitat specialist 
species in the preferential data set — for example Arbutus unedo 
or Quercus ilex. These forests have traditionally attracted the 
interest of botanists and vegetation ecologists because of their 
relatively easy accessibility combined with typical species com-
position. In turn, this particular attention could have enriched the 
preferential data set in terms of species diversity. The evergreen 
warm-temperate forests may be difficult to detect by random or 
systematic sampling if we consider their limited distribution in the 
study area with respect to the deciduous warm-temperate forests 
(Agrillo et al.,  2021). The low performance of the probabilistic 
data set in detecting habitat specialist species is in line with the 
results of Swacha et al.  (2017) and suggests the difficulty of in-
cluding undisturbed and characteristic forest patches in the data 
collection because of their limited geographical distribution in the 
study area. Thus, the data collection in transitional zones rich in 
non-specialist species constrained by the probabilistic sampling 
design could have increased the observed diversity of species and 
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species assemblages. Moreover, the constrained sampling adopted 
in the probabilistic approach prevents the detection of scattered 
patches and linear elements of, for example, remnant riparian for-
ests, which frequently occur in peculiar landscape configurations 
detectable by fine topographic variables only (Douda, 2010).

4.2  |  The preferential approach

The preferential approach performed better with forest stands rich in 
specialist species with a higher number of relatively  rare species, e.g. 

Acer lobelii, Taxus baccata or Abies alba in the cool- and cold-temperate 
forests, respectively. Chytrý  (2001) suggested preferential data sets 
of species-poor vegetation may be biased toward higher species rich-
ness because of the surveyors' tendency to increase the plot size to 
include indicator species. We found low performance of the preferential 
sampling for detecting species richness and diversity of species assem-
blages in the typically species-poorer cool- and cold-temperate forests, 
which is in line with Botta-Dukát et al.'s (2007) findings. The focus of 
the preferential approach with respect to undisturbed forest stands am-
plifies the sampling of rare specialist species but reduces the sampling 
of ecotonal species connected to forest dynamics, thus decreasing the 

F I G U R E  4 Overall, shared and exclusive information emerging from the probabilistic and preferential data sets for: (a) the habitat 
specialist species; (b) diversity of species assemblages; and (c) species richness estimates. Proportional Venn diagrams with median values 
of their components: the exclusive components (“pro” and “pre”), the shared component (“sha”) and the overall information (“Probabilistic” 
and “Preferential”). The components were calculated for the indicator species, the areas occupied by the data sets in a Detrended 
Correspondence Analysis bi-plot, and the areas encompassed by spatially-constrained rarefaction curves of the two data sets.
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sampled species richness. By contrast, this approach allows sampling 
similar or higher species richness estimates and assemblage diversity 
than the probabilistic approach in complex vegetation types such as 
the warm-temperate forest. Because of ecological, biogeographi-
cal, evolutionary, and historical factors, the warm-temperate forests 
have a particularly rich species pool (Box, 2015; Rundel et al., 2016; 
Večeřa et al., 2019), especially in annual species (Večeřa et al., 2021). 
Interestingly, this high diversity is also reflected in a high number of 
vegetation types (Preislerová et al., 2022). Moreover, when considering 
patterns of forest area gains and losses, in combination with levels of 
protection and population density, low-elevation forest stands of the 
Italian country have been affected by a high degree of human impact 
during the last century (Zannini et al., 2022). This could result in more 
undisturbed conditions characterized by rare forest specialists at remote 
and high-elevation sites and a continuum between rural landscapes and 
secondary forest stands at low-elevation sites. Thus, the exclusive spe-
cies richness combined with a complex forest landscape affected by 

millennia of anthropogenic impacts (Sadori et al.,  2011) exacerbates 
the diversity of species assemblages occurring in limited areas (Agrillo 
et al., 2021). This complexity may be better detected with the support 
of a preferential approach because of the localization of sampling units 
positively conditioned by the knowledge of expert botanists.

4.3  |  Combining probabilistic and 
preferential sampling

The complementary perspective of the probabilistic and the prefer-
ential approaches for detecting multiple facets of plant community 
diversity suggests the high potential of combining both sampling ap-
proaches. The large availability of preferential plots can be used for 
explorative analyses and for obtaining descriptive statistics, whereas 
the probabilistic data set is essential for hypothesis testing (Botta-
Dukát et al.,  2007). While the probabilistic data set can unbiasedly 

F I G U R E  5 Index of performance for the probabilistic and preferential data sets calculated for three types of diversity analyses. 
The index is calculated as the ratio between the shared performance subtracted from the exclusive performance and their 
sum. Performances are calculated as percentages and the derived index ranges between −1 and 1. We calculated the index for the whole 
data sets and three vegetation types. Median values and significance of p values obtained from the Mann–Whitney test are shown 
(***, p < 0.001).
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represent the ecological status of forests at the country scale by eval-
uating the most frequent species richness or composition (Roleček 
et al., 2007), the preferential data set focuses on stands rich in undis-
turbed and specialist species as well as peculiar forest types, attaining 
additional information that is crucial for estimating regional diversity. 
Accordingly, the mean composition of Italian forests assessed with the 
probabilistic data set resulted in lower occurrences of habitat special-
ist species with respect to the species composition provided by an ag-
gregate of preferential data sets. However, the indicative value of the 
preferential approach highlights its potential to detect conservation-
relevant vegetation types (Chytrý et al., 2020). The scattered and rare 
distribution of undisturbed forest remnants rich in specialist species 
(e.g. old-growth forest stands; Barredo et al., 2021) could be better 
detected through targeted sampling. This holds true also for hotspots 
of plant diversity driven by topographic or biogeographic factors — for 
example, the azonal and Mediterranean evergreen forests (Naiman 
& Décamps, 1997; Rundel et al.,  2016). A combination of both ap-
proaches in field surveys is thus recommended as it allows efficient 
and comprehensive evaluation of ecosystem diversity and status.

4.4  |  Spatial and temporal baselines for 
conservation planning

We have presented here a workflow to test performances and de-
tect unbalanced data distributions in large vegetation plot data-
bases. The combination of existing large vegetation plot data sets 
has been shown to be a reliable reference system to extrapolate 
spatial and temporal baselines for biodiversity conservation plan-
ning (Franklin et al., 2017; Chytrý et al., 2020). Our study underlines 
the importance of studying diversity patterns while considering a 
well-designed integration of different sampling schemes to pro-
vide a description of multiple facets of plant community diversity. 
These sampling schemes should use standards to consistently 
apply statistical assumptions but also evaluate local and regional 
species diversity considering heterogeneous landscapes as a result 
of biogeographical and land-use history (Canullo et al., 2013; Speak 
et al., 2018). Using significant environmental strata to select sam-
pling sites, probabilistic approaches will result in diversity meas-
urements with known uncertainty values. On the other hand, the 
flexibility of preferential approaches identifies species-rich areas 
supporting the development and implementation of conservation 
planning and targeted actions  —  for example identifying habitat 
types (Chytrý et al., 2020), vegetation types (Bonari et al., 2021), 
old-growth forests (Sabatini, Bluhm, et al., 2021), refugia (Jiménez-
Alfaro et al., 2018; Alessi et al., 2019), and riparian forest remnants 
(Douda et al.,  2016). Geographical and biogeographical gaps in 
diversity monitoring data could be filled in a step-by-step proce-
dure based on two (or more) sampling approaches which include: 
(i) tracing the spatial and temporal diversity baselines using exist-
ing large electronic archives; (ii) evaluating data deficiencies and 
performances; and (iii) planning efficient monitoring surveys based 
on historical data. In this procedure, adaptative sampling strategies 

may be effective for monitoring highly diverse and rare species or 
habitats (Fattorini et al., 2022). In adaptive sampling strategies an 
additional sampling effort is allocated to areas where the ecological 
phenomenon was observed in the earlier sampling surveys (Pacifici 
et al., 2016). Aggregated archives and preferential surveys could 
play an important role as baseline for monitoring regional diversity. 
This workflow should generate standardized diversity work and 
data flows between the scientific community and environmental 
agencies to implement conservation planning at the national scale 
(Mihoub et al., 2017; Hillebrand et al., 2018; Schmidt-Traub, 2021). 
Our combined approach thus encompasses a comprehensive in-
tegrated view that will eventually result in an optimized tool for 
assessing plant diversity in natural and semi-natural ecosystems.
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(http://www.givd.info/ID/EU-00-026; Bonari et al., 2019). The list of 
the 16,259 preferential plots selected for the analyses is reported in 
Appendix S4.
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