873 research outputs found

    Mott insulator states of ultracold atoms in optical resonators

    Get PDF
    We study the low temperature physics of an ultracold atomic gas in the potential formed inside a pumped optical resonator. Here, the height of the cavity potential, and hence the quantum state of the gas, depends not only on the pump parameters, but also on the atomic density through a dynamical a.c.-Stark shift of the cavity resonance. We derive the Bose-Hubbard model in one dimension, and use the strong coupling expansion to determine the parameter regime in which the system is in the Mott-insulator state. We predict the existence of overlapping, competing Mott states, and bistable behavior in the vicinity of the shifted cavity resonance, controlled by the pump parameters. Outside these parameter regions, the state of the system is in most cases superfluid.Comment: 4 pages, 3 figures. Substantially revised version. To appear in Phys. Rev. Let

    Generalized qudit Choi maps

    Get PDF
    Following the linear programming prescription of Ref. \cite{PRA72}, the ddd\otimes d Bell diagonal entanglement witnesses are provided. By using Jamiolkowski isomorphism, it is shown that the corresponding positive maps are the generalized qudit Choi maps. Also by manipulating particular ddd\otimes d Bell diagonal separable states and constructing corresponding bound entangled states, it is shown that thus obtained ddd\otimes d BDEW's (consequently qudit Choi maps) are non-decomposable in certain range of their parameters.Comment: 22 page

    Separable approximations of density matrices of composite quantum systems

    Get PDF
    We investigate optimal separable approximations (decompositions) of states rho of bipartite quantum systems A and B of arbitrary dimensions MxN following the lines of Ref. [M. Lewenstein and A. Sanpera, Phys. Rev. Lett. 80, 2261 (1998)]. Such approximations allow to represent in an optimal way any density operator as a sum of a separable state and an entangled state of a certain form. For two qubit systems (M=N=2) the best separable approximation has a form of a mixture of a separable state and a projector onto a pure entangled state. We formulate a necessary condition that the pure state in the best separable approximation is not maximally entangled. We demonstrate that the weight of the entangled state in the best separable approximation in arbitrary dimensions provides a good entanglement measure. We prove in general for arbitrary M and N that the best separable approximation corresponds to a mixture of a separable and an entangled state which are both unique. We develop also a theory of optimal separable approximations for states with positive partial transpose (PPT states). Such approximations allow to decompose any density operator with positive partial transpose as a sum of a separable state and an entangled PPT state. We discuss procedures of constructing such decompositions.Comment: 12 pages, 2 figure

    Robustness of Fractional Quantum Hall States with Dipolar Atoms in Artificial Gauge Fields

    Full text link
    The robustness of fractional quantum Hall states is measured as the energy gap separating the Laughlin ground-state from excitations. Using thermodynamic approximations for the correlation functions of the Laughlin state and the quasihole state, we evaluate the gap in a two-dimensional system of dipolar atoms exposed to an artificial gauge field. For Abelian fields, our results agree well with the results of exact diagonalization for small systems, but indicate that the large value of the gap predicted in [Phys. Rev. Lett. 94, 070404 (2005)] was overestimated. However, we are able to show that the small gap found in the Abelian scenario is dramatically increased if we turn to non-Abelian fields squeezing the Landau levels

    Classification of mixed three-qubit states

    Get PDF
    We introduce a classification of mixed three-qubit states, in which we define the classes of separable, biseparable, W- and GHZ-states. These classes are successively embedded into each other. We show that contrary to pure W-type states, the mixed W-class is not of measure zero. We construct witness operators that detect the class of a mixed state. We discuss the conjecture that all entangled states with positive partial transpose (PPTES) belong to the W-class. Finally, we present a new family of PPTES "edge" states with maximal ranks.Comment: 4 pages, 1 figur

    Scaling of entanglement at quantum phase transition for two-dimensional array of quantum dots

    Full text link
    With Hubbard model, the entanglement scaling behavior in a two-dimensional itinerant system is investigated. It has been found that, on the two sides of the critical point denoting an inherent quantum phase transition (QPT), the entanglement follows different scalings with the size just as an order parameter does. This fact reveals the subtle role played by the entanglement in QPT as a fungible physical resource

    Multipartite entanglement percolation

    Full text link
    We present percolation strategies based on multipartite measurements to propagate entanglement in quantum networks. We consider networks spanned on regular lattices whose bonds correspond to pure but non-maximally entangled pairs of qubits, with any quantum operation allowed at the nodes. Despite significant effort in the past, improvements over naive (classical) percolation strategies have been found for only few lattices, often with restrictions on the initial amount of entanglement in the bonds. In contrast, multipartite entanglement percolation outperform the classical percolation protocols, as well as all previously known quantum ones, over the entire range of initial entanglement and for every lattice that we considered.Comment: revtex4, 4 page

    Entanglement and coherence in quantum state merging

    Get PDF
    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging where two parties aim to merge their parts of a tripartite quantum state. In standard quantum state merging, entanglement is considered as an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process, and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum, and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.Comment: 9 pages, 1 figure. Lemma 5 in Appendix D of the previous version was not correct. This did not affect the results of the main tex

    Edge Transport in 2D Cold Atom Optical Lattices

    Full text link
    We theoretically study the observable response of edge currents in two dimensional cold atom optical lattices. As an example we use Gutzwiller mean-field theory to relate persistent edge currents surrounding a Mott insulator in a slowly rotating trapped Bose-Hubbard system to time of flight measurements. We briefly discuss an application, the detection of Chern number using edge currents of a topologically ordered optical lattice insulator
    corecore