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Understanding the resource consumption in distributed scenarios is one of the main goals of quantum
information theory. A prominent example for such a scenario is the task of quantum state merging, where two
parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is
considered to be an expensive resource, while local quantum operations can be performed at no additional
cost. However, recent developments show that some local operations could be more expensive than others: it
is reasonable to distinguish between local incoherent operations and local operations which can create
coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has
free access to local incoherent operations only. In this case the resources of the process are quantified by pairs
of entanglement and coherence. Here, we develop tools for studying this process and apply them to several
relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no
merging procedure can gain entanglement and coherence at the same time. We also provide a general lower
bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also
lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von
Neumann entropy of the diagonal elements of the corresponding quantum state.
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Introduction.—While coherence has long been known in
classical physics as a fundamental wave property [1], in
quantum mechanics coherent superposition is elevated to a
universal principle governing all processes. Indeed, the fact
that all matter exhibits wave behavior was first understood by
de Broglie [2], which became the basis of the now standard
formulation of quantum mechanics in Schrödinger’s wave
equation [3]. The universality of the superposition principle,
i.e., the tenet that any two valid states of a system can be
superposed to form a new valid state, marks a radical
departure from classical physics. It is at the heart of the
many counterintuitive features of quantum theory, perhaps
most famously in Schrödinger’s Gedankenexperiment with
the cat [4]. Quantum entanglement can be considered a
particular manifestation of coherence, and both of these
nonclassical phenomena have led to extensive debates in
the early days of quantum mechanics [5,6].
While the study of the resource theory of entanglement

has a long tradition [7,8], the resource theory of quantum
coherence was formulated only recently [9,10], although
other attempts in this direction were presented earlier
[11–16]. The basis of any resource theory involves free
states; these are states which can be created at no cost. In
entanglement theory, these are all separable states. In
coherence theory these are incoherent states [9], i.e., states
which are diagonal in a fixed basis jii. The second
important ingredient of any resource theory is that of free

operations, i.e., operations which can be performed at no
additional cost. In entanglement theory this is usually the
set of local operations and classical communication,
although other, more general sets such as separable
operations [17,18] and asymptotically nonentangling oper-
ations [19,20] have also been considered. In coherence
theory, free operations are called incoherent operations.
These are precisely the quantum operations which have
incoherent Kraus operators, i.e., Kijmi ∝ jni, where jmi
and jni are elements of the incoherent basis [9].
Triggered by these recent developments, much effort is

put into understanding the role of coherence as a resource
in quantum theory [21–38]. Several new quantifiers of
coherence have been proposed [39–52], and the dynamics
of some of these quantities under noisy evolution has
been investigated [53–57]. Several works also study
maximally coherent states [58,59], the role of coherence
in spin models [60,61], the cohering power of quantum
channels [62–64], and relations between coherence and
other measures of quantumness [65–71]. Coherence
also plays an important role in quantum thermodynamics
[72–82], and its investigation in biological systems is an
important step towards finding quantum phenomena in
living objects [83–86]. Additionally, a distinction
between “speakable” and “unspeakable” coherence was
also introduced recently [87]. Here, we are describing
coherence in a speakable sense, whereas unspeakable
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coherence is the resource captured in resource theories of
asymmetry [15].
Contrary to entanglement, which inherently implies a

scenario of at least two separated parties, the resource
theory of coherence has initially been introduced for one
party only. Very recently, there were several approaches
to extend the notion of coherence to more than one party
[53,65,68,70,88–93]. Here, we build on the methods
presented in Refs. [89–91], aiming to study the interplay
between entanglement and coherence in the task known as
quantum state merging [94,95].
In standard quantum state merging, two parties—their

names are traditionally Alice and Bob—share a mixed
quantum state ρ ¼ ρAB. Alice aims to send her part of the
state to Bob via an additional quantum channel. The
difficulty of the task arises from an extra requirement:
the process has to be performed in such a way that the
overall purification of the state remains intact. As was
shown in Refs. [94,95], the singlet rate required for this
process is equal to the conditional entropy SðAjBÞρ ¼
SðρABÞ − SðρBÞ, where SðρÞ ¼ −Tr½ρlog2ρ� is the von
Neumann entropy. To be precise, if the conditional entropy
is positive, then merging is possible with singlets at rate
SðAjBÞρ, and merging is not possible if fewer singlets are
available. Moreover, if the conditional entropy is negative,
the process is possible without any entanglement. Apart
from merging the state for free, Alice and Bob can
additionally gain singlets at the rate −SðAjBÞρ.
Here, we consider the task of incoherent quantum state

merging. This task is very similar to standard quantum state
merging, up to the fact that Bob has free access to incoherent
operations only; i.e., he has to pay for operations which are
not incoherent. There are at least twomotivations for this: On
the one hand, we would like to understand better the local
quantum operations that Alice and, especially, Bob have to
perform in merging. On the other hand, coherence seems to
be the resource of choice to consider here, as entanglement
and coherence are both resources of superposition, one in
correlation, the other locally. Thus, while the cost of standard
quantum state merging is quantified by the required entan-
glement rate E, the cost of incoherent quantum state merging
will be quantified by a pair of entanglement and coherence
rate (E, C). Solving the problem of incoherent quantum state
merging requires the characterization of all optimal pairs
(E, C). These are pairs of entanglement and coherence for
which merging is possible, but neither entanglement nor
coherence of the pair can be reduced.
At this point we note that the term “coherence” used in

this Letter and other recent papers is, of course, also used in
atomic and molecular physics, where coherences denote
off-diagonal elements of the density matrix, typically on the
basis of energy eigenstates. Note, however, that in quantum
optics the term coherence is also used in the context of
classical and quantum electrodynamics, where it describes
the factorization property of certain correlation functions,

ultimately related to the prominent Glauber-Sudarshan
“coherent states” [96,97]. Off-diagonal elements of the
density matrix, in the latter sense, are related rather to the
“nonclassicality” of states of photons, phonons, bosons,
etc. (cf. Refs. [98–100] and the references therein).
Incoherent quantum state merging.—We consider the

scenario where three parties, Alice, Bob, and a referee, share
a joint quantum state ρ ¼ ρRAB. In the task of incoherent
quantum state merging, Alice and Bob aim to merge their
parts of the total state on Bob’s side by using local quantum-
incoherent operations and classical communication (LQICC)
[89]. Additionally, Alice and Bob have access to singlets at
rate E and maximally coherent states at rate C on Bob’s side.
In the following, we are interested in achievable pairs

(E, C). These are pairs combining coherence and entan-
glement for which the aforementioned task can be per-
formed in the asymptotic scenario. Similar to standard
quantum state merging [94,95], we consider the most
general situation, where Alice and Bob can make catalytic
use of entanglement and coherence [101]. We call Ei the
entanglement rate which is initially shared by Alice and
Bob, and Et will be the final amount of entanglement
between them. Similarly, Ci and Ct will be the initial and
the final amount of Bob’s local coherence. An entangle-
ment-coherence pair (E, C) is achievable if there exist
numbers Ei, Et, Ci, and Ct with E ¼ Ei − Et and
C ¼ Ci − Ct, such that, for any ε > 0 and any δ > 0 for
all sufficiently large integers n ≥ n0, there exists a LQICC
protocol Λ between Alice and Bob, such that

kΛ½ρ⊗n
i ⊗ Φ⊗⌊ðEiþδÞn⌋

2 ⊗ Ψ⊗⌊ðCiþδÞn⌋
2 �

−ρ⊗n
t ⊗ Φ⊗⌈Etn⌉

2 ⊗ Ψ⊗⌈Ctn⌉
2 k1 ≤ ϵ. ð1Þ

Here, ρi ¼ ρRAB ⊗ j0ih0j ~B is the total initial state, where ~B
is an additional particle in Bob’s hands with the dimension

d ~B ¼ dA. jΦ2i ¼
ffiffi
1
2

q
ðj00i þ j11iÞ is a maximally

entangled two-qubit state shared by Alice and Bob, and

jΨ2i ¼
ffiffi
1
2

q
ðj0i þ j1iÞ is a maximally coherent single-qubit

state on Bob’s side. The target state ρt ¼ ρR ~BB ⊗ j0ih0jA is
the same as ρi up to relabeling the parties A and ~B, and
kMk1 ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffi
M†M

p
is the trace norm.

The achievable region is a closed and convex set, owing
to the timesharing principle [102,103]. Namely, on block
length n and for 0 < p < 1, we can break the n systems
into two blocks of k ¼ ⌊pn⌋ and l ¼ ⌈ð1 − pÞn⌉, and we
can run a first protocol with asymptotic rate (E1, C1) on the
k block, and a second protocol with asymptotic rate (E2,
C2) on the l block. The tensor product of these protocols is
evidently an asymptotically error-free merging protocol,
and it achieves the rate pair ðE;CÞ ¼ ½pE1 þ ð1 − pÞE2;
pC1 þ ð1 − pÞC2�.
As in standard quantum state merging, the quantities E

and C can be positive or negative. If E (C) is positive, it
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means that the merging procedure consumes entanglement
(coherence) at the rate E (C). If the corresponding quantity
is negative, the process can be performed without the
corresponding resource, and singlets (maximally coherent
states) are gained as well. Crucially, as we will see later in
this Letter, the latter gain is not possible for both entangle-
ment and coherence at the same time: if entanglement is
gained in the process, coherence has to be consumed, and
vice versa.
Clearly, if a pair (E, C) is achievable, then any other pair

(E0, C0) is also achievable for E0 ≥ E and C0 ≥ C. A pair
(E, C) will be called optimal if it is achievable and if the
pairs (E, C0) and (E0, C) are not achievable for any C0 < C
and E0 < E. Since via LQICC operations a singlet can be
converted into a maximally coherent state on Bob’s side
[89], with every achievable pair (E, C), (Eþ t, C − t) is
also achievable for t > 0. Thus, it is always possible to
perform incoherent merging with C ¼ 0, and the corre-
sponding optimal pair will be denoted (E0, 0). Another
important pair is the one with the minimal amount of
entanglement, Emin, among all protocols. We denote it
(Emin, Cmax) since it also has the maximal amount of
coherence among all optimal pairs [104].
A full solution of incoherent quantum state merging

implies determining all optimal pairs for a given tripartite
state. The following proposition provides a bound on the
entanglement-coherence sum Eþ C.
Proposition 1.—Given a tripartite quantum state

ρ ¼ ρRAB, any achievable pair (E, C) fulfills the following
inequality:

Eþ C ≥ SðidR ⊗ ΔAB½ρ�Þ − SðidRA ⊗ ΔB½ρ�Þ; ð2Þ

where ΔX½ρ� denotes full decoherence of the state ρ in the
incoherent basis of a (possibly multipartite) subsystem X:
ΔX½ρ� ¼ P

ijiihijXρjiihijX. We refer the reader to Sec. I of
the Supplemental Material [105] for the proof, which is
based on monotonicity of QI relative entropy under LQICC
operations [89].
It is instructive to compare these results to standard

quantum state merging, as presented in Refs. [94,95]. In
standard quantum state merging, the entanglement rate
required for merging a pure state ψRAB is given by the
conditional entropy of the reduced state ρAB, which can be
either positive or negative. In the negative case, quantum
state merging is possible without entanglement and addi-
tional singlets are produced. Since the right-hand side of
Eq. (2) cannot be negative, it follows that the sum Eþ C is
also non-negative. While each of the quantities E or C can
still be negative individually, they cannot both be negative
at the same time. Thus, there is no merging procedure
where entanglement and coherence are gained simultane-
ously. This statement is true for all mixed states ρRAB.
Having presented the general framework, we will now

focus on the situation where the total state is pure. Note that

understanding of the pure-state scenario also gives insights
for general mixed states. Specifically, if a pair (E, C) is
achievable for a pure state jψiRAB, the same pair is also
achievable for any state ρRAB with the same reduction, such
that ρAB ¼ TrR½ψRAB�.
Incoherent merging of pure states.—We will now con-

sider incoherent quantum state merging for general pure
states. By state merging [95,110], we have E ≥ Emin ¼
SðAjBÞρ with the reduced state ρ ¼ ρAB. Moreover, for pure
states Proposition 1 reduces to Eþ C ≥ SðAjBÞρ̄, with the
dephased state ρ̄ ¼ ΔAB½ρAB�. As we will see in the
following theorem, this bound is saturated.
Theorem 2.—Any pure state jψiRAB can be merged with

the optimal pair (E0, C ¼ 0), where E0 ¼ Sðρ̄ABÞ − Sðρ̄BÞ.
We refer to Sec. II of the Supplemental Material [105] for

the proof, which is based on an adaptation of the Slepian-
Wolf distributed compression of the decohered—classical—
source. Note that ρ̄AB is a classical state, and its conditional
entropy, according to the Slepian-Wolf theorem [111], is
precisely the amount of classical communication required to
inform Bob about Alice’s register. In fact, the proof of this
theorem in Sec. II of the Supplemental Material [105] uses
the Slepian-Wolf protocol as a building block.
The above theorem implies that, for pure states ψRAB, the

minimal entanglement-coherence sum Eþ C required for
merging is equal to the conditional entropy of the decohered
state ρ̄AB. We also mention that, for pure states of the form
jψiRA ⊗ j0iB, the procedure describedhere can be seen as the
incoherent version of Schumacher compression [112].
Specifically, Theorem 2 proves that any state ρ can be
faithfully compressed at the rate SðΔ½ρ�Þ, under the
assumption that the decompression is performed with inco-
herent operations only.
A final comment is in order concerning the applicability

of Proposition 1 and Theorem 2 to different operational
classes. Beyond the incoherent operations considered in
this Letter, one can consider the more general class of
“maximal” incoherent operations (MIO), which consists of
all non-coherence-generating maps [10,113]. As we discuss
in Sec. I of the Supplemental Material [105], the lower
bound of Proposition 1 holds as well for MIO. On the
achievability end, the rate of Theorem 2 is still achievable
when Bob is limited to so-called strictly incoherent
operations [10,32], and even if he is further restricted to
the class of physical incoherent operations [49]. Also,
Alice’s measurement in Theorem 2 can always be made
incoherent since the protocol is one way, with her final state
being incoherent. Thus, our result also applies to the
scenario of bipartite local incoherent operations and
classical communications [90,91].
Coherence-entanglement trade-off.—The development

so far revealed some facts about the landscape of the
achievable pairs (E, C) for incoherent merging of a state
ρRAB. Most importantly, there are two inaccessible regions
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given by the inequalities Eþ C ≥ SðΔAB½ρ�Þ − SðΔB½ρ�Þ
and E ≥ Emin. For a pure state, these simplify to Eþ C ≥
SðAjBÞρ̄ and E ≥ SðAjBÞρ, and the lower bound is tight, as
½E ¼ E0 ¼ SðAjBÞρ̄; C ¼ 0� is achievable. Furthermore,
since with every achievable pair (E, C) it is true that
(Eþ t,C − t) is also achievable for t > 0, we find a boundary
of the achievable region in the line of slope−1 from (E0, 0) to
the right; see Fig. 1.We do not know at this point whether this
boundary line continues with slope −1 also to the left of that
point. The biggest open question is the characterization of
Cmax, which is the coherence rate required for the minimum
possible entanglement rate Emin. Naturally, if we could show
that (E ¼ Emin, C ¼ E0 − Emin) is achievable, we would
have characterized the entire achievable region, showing that
it is delimited by the two abovementioned linear inequalities.
On the other hand, it is quite conceivable that, in general,
Cmax ≫ E0 − Emin.
We are now going to present an example indicative of the

second option inspired by the “flower states” [114]:

jψiRAB ¼ 1ffiffiffiffiffiffi
2d

p
X1

i¼0

Xd

j¼1

ðU⊤
i jjiÞRjiiAjjiB; ð3Þ

where, for definitiveness, U0 ¼ 1, U1 ¼ QFT is the quan-
tum Fourier transform. One checks to see that, for this
family of states, E0 ¼ 1 (attained by simply teleporting
Alice’s qubit) and Emin ¼ 0. Indeed, there is a simple exact

merging protocol not using any entanglement, which
consists of Alice measuring in the computational basis
and communicating i to Bob. Bob, in turn, appliesU†

i , after
which he is left with the maximally entangled state jΦdiRB
with the reference; now he creates the state jþi ~B ¼
ð1= ffiffiffi

2
p Þðj0i þ j1iÞ and recovers the state jψiR ~BB by the

controlled unitary j0ih0j ⊗ U0 þ j1ih1j ⊗ U1. Note that
whileU0 is trivial, U1 requires a large amount of coherence
to be implemented. Indeed, the previous procedure of Bob
requires asymptotically a rate of 1þ 1

2
log d of coherence.

Conversely, we have the following lower bound.
Theorem 3.—Merging the state in Eq. (3) via one-way

LQICC without any initial entanglement—i.e., not only
Ei ¼ 0 but also δ ¼ 0 in Eq. (1)—requires a rate of
coherence of at least C ≥ 1þ 1

2
log d ≫ 1.

We refer to Sec. III of the Supplemental Material [105]
for the proof. While we proved the theorem for the case
where classical communication only goes in one direction,
it is reasonable to believe that this result can be extended to
arbitrary LQICC protocols. We also note another limitation
of the result: our proof covers only the case that entangle-
ment is exactly zero initially. It is not clear if this result
also applies when considering a more general merging
procedure where entanglement vanishes only in the asymp-
totic limit. Nevertheless, this result provides strong evi-
dence that, in the task of quantum state merging, it is
possible to save a large amount of local coherence by using
a little extra entanglement.
In Sec. IV of the Supplemental Material [105], we also

study a family of mixed fully separable states of the
form ρ ¼ P

i;jpijjijihijjR ⊗ jψ ijihψ ijjA ⊗ jiihijB, where
the states jψ iji are mutually orthogonal for different j’s,
i.e., hψ ijjψ iki ¼ δjk. As shown in the Supplemental
Material [105], for all of these states, all optimal pairs
are given by ðE;CÞ ¼ ðaCmax; ½1 − a�CmaxÞ, with a ≥ 0
and Cmax ¼

P
i;jpijS(Δðψ ijÞ).

Conclusions.—In this Letter we introduced and studied
the task of incoherent quantum state merging. This task is
the same as standard quantum state merging, up to the fact
that one of the parties has free access to local incoherent
operations only and has to consume a coherent resource for
more general operations. The amount of resources needed
for merging is quantified by an entanglement-coherence
pair (E, C). In general, we showed that the entanglement-
coherence sum Eþ C is non-negative, which means that no
merging procedure can gain entanglement and coherence at
the same time. For pure states, we gave a protocol of
incoherent quantum state merging by finding the minimal
entanglement-coherence sum Eþ C, which turns out to be
the conditional entropy of the decohered state ρ̄AB.
Our results include an incoherent version of Schumacher

compression. Specifically, if we require that the decom-
pression is performed via incoherent operations only, then
the optimal compression rate is given by S(ΔðρÞ). This rate

FIG. 1. The achievable region and known bounds for coherence
and entanglement required to merge a general pure state ψRAB.
The shaded regions to the left and below the straight lines are
ruled out. The solid line of slope −1 to the right, downward
from (E0, 0), as well as the solid vertical line upward from
(Emin, Cmax), are part of the boundary of the achievable region.
The dotted curve connecting these two points represents CðEÞ,
the general form of which is not known, however. The quantities
E0 and Emin are given as E0 ¼ SðAjBÞρ̄, Emin ¼ SðAjBÞρ.
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is, in general, larger than the standard compression rate SðρÞ,
which results from the fact that coherence is required for the
decompression in the standard case.
We have also made first steps towards an understanding

of the precise trade-off between entanglement and coher-
ence for the task of LQICC merging. While this remains a
major open problem in general, we have given strong
indications that in certain situations the equivalent of one
ebit can be an arbitrary amount of coherence, which we
could prove in a setting of one-way LQICC and a situation
where we want to reduce the available entanglement
exactly (and not only asymptotically) to zero.
Another open question is the relation of LQICC merging

to the results presented in Ref. [117]. The authors of
Ref. [117] specifically study the work cost for erasing a
system A which is (quantum) correlated with another
observer B in an environment at temperature T. As was
shown in Ref. [117], this work cost is bounded above by
SðAjBÞkT lnð2Þ, where k is the Boltzmann constant. At this
point, it is natural to ask whether our results can be applied
to understanding the role of coherence in the erasure
process. We leave these questions for future research.
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