1,076 research outputs found

    Sterols sense swelling in lipid bilayers

    Full text link
    In the mimetic membrane system of phosphatidylcholine bilayers, thickening (pre-critical behavior, anomalous swelling) of the bilayers is observed, in the vicinity of the main transition, which is non-linear with temperature. The sterols cholesterol and androsten are used as sensors in a time-resolved simultaneous small- and wide angle x-ray diffraction study to investigate the cause of the thickening. We observe precritical behavior in the pure lipid system, as well as with sterol concentrations less than 15%. To describe the precritical behavior we introduce a theory of precritical phenomena.The good temperature resolution of the data shows that a theory of the influence of fluctuations needs modification. The main cause of the critical behavior appears to be a changing hydration of the bilayer.Comment: 11 pages, 7 ps figures included, to appear in Phys.Rev.

    Robust high-dimensional precision matrix estimation

    Full text link
    The dependency structure of multivariate data can be analyzed using the covariance matrix Σ\Sigma. In many fields the precision matrix Σ1\Sigma^{-1} is even more informative. As the sample covariance estimator is singular in high-dimensions, it cannot be used to obtain a precision matrix estimator. A popular high-dimensional estimator is the graphical lasso, but it lacks robustness. We consider the high-dimensional independent contamination model. Here, even a small percentage of contaminated cells in the data matrix may lead to a high percentage of contaminated rows. Downweighting entire observations, which is done by traditional robust procedures, would then results in a loss of information. In this paper, we formally prove that replacing the sample covariance matrix in the graphical lasso with an elementwise robust covariance matrix leads to an elementwise robust, sparse precision matrix estimator computable in high-dimensions. Examples of such elementwise robust covariance estimators are given. The final precision matrix estimator is positive definite, has a high breakdown point under elementwise contamination and can be computed fast

    Theoretical and numerical studies of chemisorption on a line with precursor layer diffusion

    Get PDF
    We consider a model for random deposition of monomers on a line with extrinsic precursor states. As the adsorbate coverage increases, the system develops non-trivial correlations due to the diffusion mediated deposition mechanism. In a numeric simulation, we study various quantities describing the evolution of the island structure. We propose a simple, self-consistent theory which incorporates pair correlations. The results for the correlations, island density number, average island size and probabilities of island nucleation, growth and coagulation show good agreement with the simulation data.Comment: 17 pages(LaTeX), 11 figures(1 PS file, uuencoded), submmited to Phys. Rev.

    Bacteroides fragilis requires the ferrous-iron transporter FeoAB and the CobN-like proteins BtuS1 and BtuS2 for assimilation of iron released from heme

    Get PDF
    The intestinal commensal and opportunistic anaerobic pathogen Bacteroides fragilis has an essential requirement for both heme and free iron to support growth in extraintestinal infections. In the absence of free iron, B. fragilis can utilize heme as the sole source of iron. However, the mechanisms to remove iron from heme are not completely understood. In this study, we show that the inner membrane ferrous iron transporter ∆feoAB mutant strain is no longer able to grow with heme as the sole source of iron. Genetic complementation with the feoAB gene operon completely restored growth. Our data indicate that iron is removed from heme in the periplasmic space, and the released iron is transported by the FeoAB system. Interestingly, when B. fragilis utilizes iron from heme, it releases heme-derived porphyrins by a dechelatase activity which is upregulated under low iron conditions. This is supported by the findings showing that formation of heme-derived porphyrins in the ∆feoAB mutant and the parent strain increased 30-fold and fivefold (respectively) under low iron conditions compared to iron replete conditions. Moreover, the btuS1 btuS2 doublemutant strain (lacking the predicted periplasmic, membrane anchored CobN-like proteins) also showed growth defect with heme as the sole source of iron, suggesting that BtuS1 and BtuS2 are involved in heme-iron assimilation. Though the dechelatase mechanism remains uncharacterized, assays performed in bacterial crude extracts show that BtuS1 and BtuS2 affect the regulation of the dechelatase-specific activities in an iron-dependent manner. These findings suggest that the mechanism to extract iron from heme in Bacteroides requires a group of proteins, which spans the periplasmic space to make iron available for cellular functions

    Identification of PKD1L1 Gene Variants in Children with the Biliary Atresia Splenic Malformation Syndrome

    Get PDF
    Biliary atresia (BA) is the most common cause of end‐stage liver disease in children and the primary indication for pediatric liver transplantation, yet underlying etiologies remain unknown. Approximately 10% of infants affected by BA exhibit various laterality defects (heterotaxy) including splenic abnormalities and complex cardiac malformations — a distinctive subgroup commonly referred to as the biliary atresia splenic malformation (BASM) syndrome. We hypothesized that genetic factors linking laterality features with the etiopathogenesis of BA in BASM patients could be identified through whole exome sequencing (WES) of an affected cohort. DNA specimens from 67 BASM subjects, including 58 patient‐parent trios, from the NIDDK‐supported Childhood Liver Disease Research Network (ChiLDReN) underwent WES. Candidate gene variants derived from a pre‐specified set of 2,016 genes associated with ciliary dysgenesis and/or dysfunction or cholestasis were prioritized according to pathogenicity, population frequency, and mode of inheritance. Five BASM subjects harbored rare and potentially deleterious bi‐allelic variants in polycystin 1‐like 1, PKD1L1, a gene associated with ciliary calcium signaling and embryonic laterality determination in fish, mice and humans. Heterozygous PKD1L1 variants were found in 3 additional subjects. Immunohistochemical analysis of liver from the one BASM subject available revealed decreased PKD1L1 expression in bile duct epithelium when compared to normal livers and livers affected by other non‐cholestatic diseases. Conclusion WES identified bi‐allelic and heterozygous PKD1L1 variants of interest in 8 BASM subjects from the ChiLDReN dataset. The dual roles for PKD1L1 in laterality determination and ciliary function suggest that PKD1L1 is a new, biologically plausible, cholangiocyte‐expressed candidate gene for the BASM syndrome

    Cardiac resynchronization therapy: mechanisms of action and scope for further improvement in cardiac function.

    Get PDF
    Aims: Cardiac resynchronization therapy (CRT) may exert its beneficial haemodynamic effect by improving ventricular synchrony and improving atrioventricular (AV) timing. The aim of this study was to establish the relative importance of the mechanisms through which CRT improves cardiac function and explore the potential for additional improvements with improved ventricular resynchronization. Methods and Results: We performed simulations using the CircAdapt haemodynamic model and performed haemodynamic measurements while adjusting AV delay, at low and high heart rates, in 87 patients with CRT devices. We assessed QRS duration, presence of fusion, and haemodynamic response. The simulations suggest that intrinsic PR interval and the magnitude of reduction in ventricular activation determine the relative importance of the mechanisms of benefit. For example, if PR interval is 201 ms and LV activation time is reduced by 25 ms (typical for current CRT methods), then AV delay optimization is responsible for 69% of overall improvement. Reducing LV activation time by an additional 25 ms produced an additional 2.6 mmHg increase in blood pressure (30% of effect size observed with current CRT). In the clinical population, ventricular fusion significantly shortened QRS duration (Δ-27 ± 23 ms, P < 0.001) and improved systolic blood pressure (mean 2.5 mmHg increase). Ventricular fusion was present in 69% of patients, yet in 40% of patients with fusion, shortening AV delay (to a delay where fusion was not present) produced the optimal haemodynamic response. Conclusions: Improving LV preloading by shortening AV delay is an important mechanism through which cardiac function is improved with CRT. There is substantial scope for further improvement if methods for delivering more efficient ventricular resynchronization can be developed. Clinical Trial Registration: Our clinical data were obtained from a subpopulation of the British Randomised Controlled Trial of AV and VV Optimisation (BRAVO), which is a registered clinical trial with unique identifier: NCT01258829, https://clinicaltrials.gov

    Evaluation of genotypic and phenotypic methods for differentiation of the members of the Anginosus group streptococci

    Get PDF
    The terminology and classification of the Anginosus group streptococci has been inconsistent. We tested the utility of 16S rRNA gene and tuf gene sequencing and conventional biochemical tests for the reliable differentiation of the Anginosus group streptococci. Biochemical testing included Rapid ID 32 Strep, API Strep, Fluo-Card Milleri, Wee-tabs, and Lancefield antigen typing. Altogether, 61 Anginosus group isolates from skin and soft tissue infections and four reference strains were included. Our results showed a good agreement between 16S rRNA gene and tuf gene sequencing. Using the full sequence was less discriminatory than using the first part of the 16S rRNA gene. The three species could not be separated with the API 20 Strep test. Streptococcus intermedius could be differentiated from the other two species by β-galactosidase (ONPG) and β-N-acetyl-glucosaminidase reactions. Rapid ID 32 Strep β-glucosidase reaction was useful in separating S. anginosus strains from S. constellatus. In conclusion, both 16S rRNA gene and tuf gene sequencing can be used for the reliable identification of the Anginosus group streptococci. S. intermedius can be readily differentiated from the other two species by phenotypic tests; however, 16S rRNA gene or tuf gene sequencing may be needed for separating some strains of S. constellatus from S. anginosus

    Rationalising "for" and "against" a policy of school-led careers guidance in STEM in the U.K. : a teacher perspective

    Get PDF
    This paper reports on teacher attitudes to changes in the provision of careers guidance in the U.K., particularly as it relates to Science, Technology, Engineering and Mathematics (STEM). It draws on survey data of n = 94 secondary-school teachers operating in STEM domains and their attitudes towards a U.K. and devolved policy of internalising careers guidance within schools. The survey presents a mixed message of teachers recognising the significance of their unique position in providing learners with careers guidance yet concern that their ‘relational proximity’ to students and ‘informational distance’ from higher education and STEM industry may produce bias and misinformation that is harmful to their educational and occupational futures
    corecore