289 research outputs found

    Lachnospira pectinoschiza sp. nov., an Anaerobic Pectinophile from the Pig Intestine

    Get PDF
    Pectinophiles are bacteria that utilize pectin and only a few related compounds as substrates. Obligately anaerobic pectinophiles have been isolated from the intestinal tracts and gingivae of humans and from the rumina of cattle. We isolated three strains of pectinophilic bacteria from colonic contents of pigs but were unable to isolate pectinophiles from the rumen contents of four sheep, even when the animals were fed a high-pectin diet. The pectinophiles isolated from pigs were strictly anaerobic, motile, gram-positive rods (0.36 to 0.56 by 2.4 to 3.1 μm). Pectin, polygalacturonic acid, and gluconate were the only substrates that supported rapid growth. All three strains grew slowly on either lactose or cellobiose and fermented fructose after a lag of several days. Pectin was degraded by means of an extracellular pectin methylesterase and a Ca2+-dependent exopectate lyase. A comparison of the 16S rRNA sequences of these isolates with the 16S rRNA sequences of other gram-positive bacteria revealed a specific relationship with Lachnospira multipara (level of similarity, 94%). The Gram reaction, formation of spore-like structures, and the utilization of lactose and cellobiose differentiated the pig isolates from previously described pectinophiles. The pig isolates represent a previously undescribed species of the genus Lachnospira, for which we propose the name Lachnospira pectinoschiza

    Genomic identification of a novel co-trimoxazole resistance genotype and its prevalence amongst Streptococcus pneumoniae in Malawi

    Get PDF
    Objectives This study aimed to define the molecular basis of co-trimoxazole resistance in Malawian pneumococci under the dual selective pressure of widespread co-trimoxazole and sulfadoxine/pyrimethamine use. Methods We measured the trimethoprim and sulfamethoxazole MICs and analysed folA and folP nucleotide and translated amino acid sequences for 143 pneumococci isolated from carriage and invasive disease in Malawi (2002–08). Results Pneumococci were highly resistant to both trimethoprim and sulfamethoxazole (96%, 137/143). Sulfamethoxazole-resistant isolates showed a 3 or 6 bp insertion in the sulphonamide-binding site of folP. The trimethoprim-resistant isolates fell into three genotypic groups based on dihydrofolate reductase (encoded by folA) mutations: Ile-100-Leu (10%), the Ile-100-Leu substitution together with a residue 92 substitution (56%) and those with a novel uncharacterized resistance genotype (34%). The nucleotide sequence divergence and dN/dS of folA and folP remained stable from 2004 onwards. Conclusions S. pneumoniae exhibit almost universal co-trimoxazole resistance in vitro and in silico that we believe is driven by extensive co-trimoxazole and sulfadoxine/pyrimethamine use. More than one-third of pneumococci employ a novel mechanism of co-trimoxazole resistance. Resistance has now reached a point of stabilizing evolution. The use of co-trimoxazole to prevent pneumococcal infection in HIV/AIDS patients in sub-Saharan Africa should be re-evaluated

    Diversity and inclusion in conservation: A proposal for a marine diversity network

    Get PDF
    Low diversity among scientists and practitioners is rampant in conservation. Currently, conservation professionals do not reflect the same diversity of perspectives and experiences of the world as the communities who bear the largest burden for implementing—or adverse consequences for failing to implement—conservation action. Acknowledging and describing the problem is important. But policies and programmes must also be put in place to correct it. Here, we highlight some measurable benefits of workforce diversity, and give an overview of some of the barriers to inclusion in marine conservation that help perpetuate low workforce diversity. Importantly, we underscore actions that both individuals and groups can take to alleviate such barriers. In particular, we describe the establishment of an online Marine Diversity Network, which conference participants proposed during a focus group meeting at the 4th International Marine Conservation Congress. The network will serve to bring together people from across the globe, from a variety of backgrounds, and from all career stages, to share knowledge, experiences and ideas, to provide and receive mentorship in marine conservation, and to forge new collaborations. Removing barriers to diverse participation requires coordinated, mindful actions by individuals and organizations. We hope that the proposed network and other actions presented in this paper find widespread support, and that they might serve both as inspiration and guide to other groups concerned with increasing diversity and inclusivity

    The metabolic, virulence and antimicrobial resistance profiles of colonising Streptococcus pneumoniae shift after PCV13 introduction in urban Malawi

    Get PDF
    Streptococcus pneumoniae causes substantial mortality among children under 5-years-old worldwide. Polysaccharide conjugate vaccines (PCVs) are highly effective at reducing vaccine serotype disease, but emergence of non-vaccine serotypes and persistent nasopharyngeal carriage threaten this success. We investigated the hypothesis that following vaccine, adapted pneumococcal genotypes emerge with the potential for vaccine escape. We genome sequenced 2804 penumococcal isolates, collected 4-8 years after introduction of PCV13 in Blantyre, Malawi. We developed a pipeline to cluster the pneumococcal population based on metabolic core genes into “Metabolic genotypes” (MTs). We show that S. pneumoniae population genetics are characterised by emergence of MTs with distinct virulence and antimicrobial resistance (AMR) profiles. Preliminary in vitro and murine experiments revealed that representative isolates from emerging MTs differed in growth, haemolytic, epithelial infection, and murine colonisation characteristics. Our results suggest that in the context of PCV13 introduction, pneumococcal population dynamics had shifted, a phenomenon that could further undermine vaccine control and promote spread of AMR

    Physical activity monitoring to assess disability progression in multiple sclerosis

    Get PDF
    Background: Clinical outcome measurement in multiple sclerosis (MS) usually requires a physical visit. Remote activity monitoring (RAM) using wearable technology provides a rational alternative, especially desirable when distance is involved or in a pandemic setting. Objective: To validate RAM in progressive MS using (1) traditional psychometric methods (2) brain atrophy. Methods: 56 people with progressive MS participated in a longitudinal study over 2.5 years. An arm-worn RAM device measured activity over six days, every six months, and incorporated triaxial accelerometry and transcutaneous physiological variable measurement. Five RAM variables were assessed: physical activity duration, step count, active energy expenditure, metabolic equivalents and a composite RAM score incorporating all four variables. Other assessments every six months included EDSS, MSFC, MSIS-29, Chalder Fatigue Scale and Beck’s Depression Inventory. Annualized brain atrophy was measured using SIENA. Results: RAM was tolerated well by people with MS; the device was worn 99.4% of the time. RAM had good convergent and divergent validity and was responsive, especially with respect to step count. Measurement of physical activity over one day was as responsive as six days. The composite RAM score positively correlated with brain volume loss. Conclusion: Remote activity monitoring is a valid and acceptable outcome measure in MS

    Population genetic structure, antibiotic resistance, capsule switching and evolution of invasive pneumococci before conjugate vaccination in Malawi

    Get PDF
    INTRODUCTION: Pneumococcal infections cause a high death toll in Sub Saharan Africa (SSA) but the recently rolled out pneumococcal conjugate vaccines (PCV) will reduce the disease burden. To better understand the population impact of these vaccines, comprehensive analysis of large collections of pneumococcal isolates sampled prior to vaccination is required. Here we present a population genomic study of the invasive pneumococcal isolates sampled before the implementation of PCV13 in Malawi. MATERIALS AND METHODS: We retrospectively sampled and whole genome sequenced 585 invasive isolates from 2004 to 2010. We determine the pneumococcal population genetic structure and assessed serotype prevalence, antibiotic resistance rates, and the occurrence of serotype switching. RESULTS: Population structure analysis revealed 22 genetically distinct sequence clusters (SCs), which consisted of closely related isolates. Serotype 1 (ST217), a vaccine-associated serotype in clade SC2, showed highest prevalence (19.3%), and was associated with the highest MDR rate (81.9%) followed by serotype 12F, a non-vaccine serotype in clade SC10 with an MDR rate of 57.9%. Prevalence of serotypes was stable prior to vaccination although there was an increase in the PMEN19 clone, serotype 5 ST289, in clade SC1 in 2010 suggesting a potential undetected local outbreak. Coalescent analysis revealed recent emergence of the SCs and there was evidence of natural capsule switching in the absence of vaccine induced selection pressure. Furthermore, majority of the highly prevalent capsule-switched isolates were associated with acquisition of vaccine-targeted capsules. CONCLUSIONS: This study provides descriptions of capsule-switched serotypes and serotypes with potential to cause serotype replacement post-vaccination such as 12F. Continued surveillance is critical to monitor these serotypes and antibiotic resistance in order to design better infection prevention and control measures such as inclusion of emerging replacement serotypes in future conjugate vaccines

    The global distribution and diversity of protein vaccine candidate antigens in the highly virulent Streptococcus pnuemoniae serotype 1

    Get PDF
    Serotype 1 is one of the most common causes of pneumococcal disease worldwide. Pneumococcal protein vaccines are currently being developed as an alternate intervention strategy to pneumococcal conjugate vaccines. Pre-requisites for an efficacious pneumococcal protein vaccine are universal presence and minimal variation of the target antigen in the pneumococcal population, and the capability to induce a robust human immune response. We used in silico analysis to assess the prevalence of seven protein vaccine candidates (CbpA, PcpA, PhtD, PspA, SP0148, SP1912, SP2108) among 445 serotype 1 pneumococci from 26 different countries, across four continents. CbpA (76%), PspA (68%), PhtD (28%), PcpA (11%) were not universally encoded in the study population, and would not provide full coverage against serotype 1. PcpA was widely present in the European (82%), but not in the African (2%) population. A multi-valent vaccine incorporating CbpA, PcpA, PhtD and PspA was predicted to provide coverage against 86% of the global population. SP0148, SP1912 and SP2108 were universally encoded and we further assessed their predicted amino acid, antigenic and structural variation. Multiple allelic variants of these proteins were identified, different allelic variants dominated in different continents; the observed variation was predicted to impact the antigenicity and structure of two SP0148 variants, one SP1912 variant and four SP2108 variants, however these variants were each only present in a small fraction of the global population (<2%). The vast majority of the observed variation was predicted to have no impact on the efficaciousness of a protein vaccine incorporating a single variant of SP0148, SP1912 and/or SP2108 from S. pneumoniae TIGR4. Our findings emphasise the importance of taking geographic differences into account when designing global vaccine interventions and support the continued development of SP0148, SP1912 and SP2108 as protein vaccine candidates against this important pneumococcal serotype

    Genomic identification of a novel co-trimoxazole resistance genotype and its prevalence amongst Streptococcus pneumoniae in Malawi.

    Get PDF
    OBJECTIVES: This study aimed to define the molecular basis of co-trimoxazole resistance in Malawian pneumococci under the dual selective pressure of widespread co-trimoxazole and sulfadoxine/pyrimethamine use. METHODS: We measured the trimethoprim and sulfamethoxazole MICs and analysed folA and folP nucleotide and translated amino acid sequences for 143 pneumococci isolated from carriage and invasive disease in Malawi (2002-08). RESULTS: Pneumococci were highly resistant to both trimethoprim and sulfamethoxazole (96%, 137/143). Sulfamethoxazole-resistant isolates showed a 3 or 6 bp insertion in the sulphonamide-binding site of folP. The trimethoprim-resistant isolates fell into three genotypic groups based on dihydrofolate reductase (encoded by folA) mutations: Ile-100-Leu (10%), the Ile-100-Leu substitution together with a residue 92 substitution (56%) and those with a novel uncharacterized resistance genotype (34%). The nucleotide sequence divergence and dN/dS of folA and folP remained stable from 2004 onwards. CONCLUSIONS: S. pneumoniae exhibit almost universal co-trimoxazole resistance in vitro and in silico that we believe is driven by extensive co-trimoxazole and sulfadoxine/pyrimethamine use. More than one-third of pneumococci employ a novel mechanism of co-trimoxazole resistance. Resistance has now reached a point of stabilizing evolution. The use of co-trimoxazole to prevent pneumococcal infection in HIV/AIDS patients in sub-Saharan Africa should be re-evaluated

    Geographical migration and fitness dynamics of Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae is a leading cause of pneumonia and meningitis worldwide. Many different serotypes co-circulate endemically in any one location1,2. The extent and mechanisms of spread and vaccine-driven changes in fitness and antimicrobial resistance remain largely unquantified. Here using geolocated genome sequences from South Africa (n = 6,910, collected from 2000 to 2014), we developed models to reconstruct spread, pairing detailed human mobility data and genomic data. Separately, we estimated the population-level changes in fitness of strains that are included (vaccine type (VT)) and not included (non-vaccine type (NVT)) in pneumococcal conjugate vaccines, first implemented in South Africa in 2009. Differences in strain fitness between those that are and are not resistant to penicillin were also evaluated. We found that pneumococci only become homogenously mixed across South Africa after 50 years of transmission, with the slow spread driven by the focal nature of human mobility. Furthermore, in the years following vaccine implementation, the relative fitness of NVT compared with VT strains increased (relative risk of 1.68; 95% confidence interval of 1.59–1.77), with an increasing proportion of these NVT strains becoming resistant to penicillin. Our findings point to highly entrenched, slow transmission and indicate that initial vaccine-linked decreases in antimicrobial resistance may be transient

    Antibody Response to Shiga Toxins in Argentinean Children with Enteropathic Hemolytic Uremic Syndrome at Acute and Long-Term Follow-Up Periods

    Get PDF
    Shiga toxin (Stx)-producing Escherichia coli (STEC) infection is associated with a broad spectrum of clinical manifestations that include diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Systemic Stx toxemia is considered to be central to the genesis of HUS. Distinct methods have been used to evaluate anti-Stx response for immunodiagnostic or epidemiological analysis of HUS cases. The development of enzyme-linked immunosorbent assay (ELISA) and western blot (WB) assay to detect the presence of specific antibodies to Stx has introduced important advantages for serodiagnosis of HUS. However, application of these methods for seroepidemiological studies in Argentina has been limited. The aim of this work was to develop an ELISA to detect antibodies against the B subunit of Stx2, and a WB to evaluate antibodies against both subunits of Stx2 and Stx1, in order to analyze the pertinence and effectiveness of these techniques in the Argentinean population. We studied 72 normal healthy children (NHC) and 105 HUS patients of the urban pediatric population from the surrounding area of Buenos Aires city. Using the WB method we detected 67% of plasma from NHC reactive for Stx2, but only 8% for Stx1. These results are in agreement with the broad circulation of Stx2-expressing STEC in Argentina and the endemic behavior of HUS in this country. Moreover, the simultaneous evaluation by the two methods allowed us to differentiate acute HUS patients from NHC with a great specificity and accuracy, in order to confirm the HUS etiology when pathogenic bacteria were not isolated from stools
    corecore