189 research outputs found

    Experimental assessment of tundra fire impact on element export and storage in permafrost peatlands

    Get PDF
    Extensive studies have been performed on wildfire impact on terrestrial and aquatic ecosystems in the taiga biome, however consequences of wildfires in the tundra biome remain poorly understood. In such a biome, permafrost peatlands occupy a sizable territory in the Northern Hemisphere and present an extensive and highly vulnerable storage of organic carbon. Here we used an experimental approach to model the impact of ash produced from burning of main tundra organic constituents (i.e., moss, lichen and peat) on surrounding aquatic ecosystems. We studied the chemical composition of aqueous leachates produced during short-term (1 week) interaction of ash with distilled water and organic-rich lake water at 5 gsolid L−1 and 20 °C. The addition of ash enriched the fluid phase in major cations (i.e., Na, Ca, Mg), macro- (i.e., P, K, Si) and micronutrients (i.e., Mn, Fe, Co, Ni, Zn, Mo). This enrichment occurred over <2 days of experiment. Among 3 studied substrates, moss ash released the largest amount of macro- and microcomponents into the aqueous solution. To place the obtained results in the environmental context of a peatbog watershed, we assume a fire return interval of 56 years and that the entire 0–10 cm of upper peat is subjected to fire impact. These mass balance calculations demonstrated that maximal possible delivery of elements from ash after soil burning to the hydrological network is negligibly small (<1–2 %) compared to the annual riverine export flux and element storage in thermokarst lakes. As such, even a 5–10 fold increase in tundra wildfire frequency may not sizably modify nutrient and metal fluxes and pools in the surrounding aquatic ecosystems. This result requires revisiting the current paradigm on the importance of wildfire impact on permafrost peatlands and calls a need for experimental work on other ecosystem compartments (litter, shrubs, frozen peat) which are subjected to fire events

    Laser beams with conical refraction patterns

    Get PDF
    Laser beams with cone-refracted output from the plane mirror is demonstrated for the first time in lasers based on intracavity conical refraction (CR) phenomenon. Transverse profile of such lasers comprises a crescent ring of CR-like distribution, where any opposite points are of orthogonal linear polarizations. We confirm the existence of such mode of CR lasers by two observations. First, cascaded CR in reflection geometry has been demonstrated for first time and it provides experimental prove that a light beam passed along optic axis of a biaxial crystal, reflected back from a plane mirror and passed again through the crystal is restored. Second, CR cavity mode with CR-like pattern through the plane mirror is experimentally and theoretically demonstrated for the first time

    Morphogenetic diagnostics of soil formation on tailing dumps of coal quarries in Siberia

    Get PDF
    Morphological diagnostics of soil-forming processes in the young soils of technogenic landscapes are considered. Comprehensive multilevel studies of soils developed on the tailings of coal mines of different age in a wide range of climatic conditions in Siberia are performed. The processes of the mineral substrate transformation predominate at the initial stages of soil formation. Then, with the development of the soil profiles, the processes of the organic matter transformation begin to play the major role, and the organoprofiles of the soils specific to the particular climatic zone are formed. Micro- and submicroscopic studies allow us to judge the character of major soil processes and to identify the features attesting to the activity of some associated processes

    Numerical Assessment of Morphological and Hydraulic Properties of Moss, Lichen and Peat from a Permafrost Peatland

    Get PDF
    Due to its insulating and draining role, assessing ground vegetation cover properties is important for high-resolution hydrological modeling of permafrost regions. In this study, morphological and effective hydraulic properties of Western Siberian Lowland ground vegetation samples (lichens, Sphagnum mosses, peat) are numerically studied based on tomography scans. Porosity is estimated through a void voxels counting algorithm, showing the existence of representative elementary volumes (REVs) of porosity for most samples. Then, two methods are used to estimate hydraulic conductivity depending on the sample's homogeneity. For homogeneous samples, direct numerical simulations of a single-phase flow are performed, leading to a definition of hydraulic conductivity related to a REV, which is larger than those obtained for porosity. For heterogeneous samples, no adequate REV may be defined. To bypass this issue, a pore network representation is created from computerized scans. Morphological and hydraulic properties are then estimated through this simplified representation. Both methods converged on similar results for porosity. Some discrepancies are observed for a specific surface area. Hydraulic conductivity fluctuates by 2 orders of magnitude, depending on the method used. Porosity values are in line with previous values found in the literature, showing that arctic cryptogamic cover can be considered an open and well-connected porous medium (over 99 % of overall porosity is open porosity). Meanwhile, digitally estimated hydraulic conductivity is higher compared to previously obtained results based on field and laboratory experiments. However, the uncertainty is less than in experimental studies available in the literature. Therefore, biological and sampling artifacts are predominant over numerical biases. This could be related to compressibility effects occurring during field or laboratory measurements. These numerical methods lay a solid foundation for interpreting the homogeneity of any type of sample and processing some quantitative properties' assessment, either with image processing or with a pore network model. The main observed limitation is the input data quality (e.g., the tomographic scans' resolution) and its pre-processing scheme. Thus, some supplementary studies are compulsory for assessing syn-sampling and syn-measurement perturbations in experimentally estimated, effective hydraulic properties of such a biological porous medium.</p

    Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape

    Get PDF
    The research has been supported by the NERC/JPI SIWA project (NE/M019896/1); grant issued in accordance with Resolution of the Government of the Russian Federation No. 220 dated 9 April 2010, under Agreement No. 14.B25.31.0001 with Ministry of Education and Science of the Russian Federation dated 24 June 2013 (BIO-GEO-CLIM); grant RFBR No 17-05-00-348a; grant FCP “Kolmogorov” 14.587.21.0036, grant RNF No 15-17-1009, and grant RFBR No 17-55-16008. Stable water isotope data are available in the Natural Environment Research Council (NERC) Environmental Information Data Centre (EIDC) data repository (title: “Stable water isotopes in Western Siberian inland waters”, permanent identifier: https://doi.org/10.5285/ca17e364-638d-4949-befb-b18b3770aec6). We would like to acknowledge the Arctic-GRO and IAEA for their publicly available databases providing supporting data for our analyses. Stream flow data at Nikolskoe was provided by Sergey Vorobiev. Liliya Kovaleva is acknowledged for the artwork in Figure 9. We would like to thank the two anonymous reviewers and the handling editors for their constructive comments that improved the manuscript.Peer reviewedPublisher PD

    Dispersed ice of permafrost peatlands represents an important source of labile carboxylic acids, nutrients and metals

    Get PDF
    Thawing of frozen organic and mineral soils and liberation of organic carbon (OC), macro- and micro-nutrients and trace elements from pore ice in high latitude regions represent a potentially important but poorly quantified retroactive linkage to climate warming. This is especially true for permafrost peatlands, occupying a sizable proportion of all permafrost territories and presenting a large and highly vulnerable stock of soil OC which can be subjected to fast thawing at currently circum-zero temperatures. The conventional method of assessing the labile water-soluble fraction of permafrost soils is aqueous extraction from dried soil. However, this technique does not allow collecting native ice present in soil pores and is therefore likely to underestimate or overestimate the pool of labile soil C and nutrients. Here, we present results of direct pore ice analyses performed on native peat cores from the western Siberia Lowland in comparison to the water extraction (10 and 100 gdry peat L-1) of soluble components from the same peat subjected to freeze drying. Aqueous leachates of permafrost peat from both thawed (0–45 cm) and frozen (45–130 cm) layers yielded high concentrations of DOC, nutrients, carboxylic acids and trace metals, comparable or higher to those in peat porewater and dispersed peat ice. We found strong (a factor of 3 to 30) enrichment in the frozen part of the core (below 45 cm, which is active layer depth) in dissolved OC, many carboxylates (acetate, formate, lactate, butyrate, propionate, pyruvate), inorganic nutrients (Si, P, N) and trace elements (Fe, Al, Mn, Zn, Sr and Ba). The dispersed ice which is present in peat below active layer represents highly labile reservoir of organic and inorganic nutrients which should be considered in permafrost thaw scenario
    corecore