952 research outputs found

    Wetting between structured surfaces: Liquid bridges and induced forces

    Get PDF
    Wetting phenomena are theoretically studied for a slab geometry consisting of a wetting phase confined between two chemically patterned substrates. Each of these is decorated by an array of stripes whose composition alternates between two different surface phases. For a single pair of opposing stripes, the wetting phase may either form a bridge spanning from one surface to the other or it may break up into two separate channels. The bridge state induces an effective interaction between the two substrates. This leads to the bridge itself having a preferred contact angle and the substrates having a preferred separation. In the case of many stripes, one has a whole sequence of morphological transitions with the number of bridges decreasing as the surface separation grows

    Contact angles on heterogeneous surfaces; a new look at Cassie's and Wenzel's laws

    Full text link
    We consider a three dimensional liquid drop sitting on a rough and chemically heterogeneous substrate. Using a novel minimization technique on the free energy of this system, a generalized Young's equation for the contact angle is found. In certain limits, the Cassie and Wenzel laws, and a new equivalent rule, applicable in general, are derived. We also propose an equation in the same spirit as these results but valid on a more `microscopic' level. Throughout we work under the presence of gravity and keep account of line tension terms.Comment: 10 pages RevTeX, 2 EPS figures. A few minor corrections mad

    Collective Molecular Dynamics in Proteins and Membranes

    Get PDF
    The understanding of dynamics and functioning of biological membranes and in particular of membrane embedded proteins is one of the most fundamental problems and challenges in modern biology and biophysics. In particular the impact of membrane composition and properties and of structure and dynamics of the surrounding hydration water on protein function is an upcoming hot topic, which can be addressed by modern experimental and computational techniques. Correlated molecular motions might play a crucial role for the understanding of, for instance, transport processes and elastic properties, and might be relevant for protein function. Experimentally that involves determining dispersion relations for the different molecular components, i.e., the length scale dependent excitation frequencies and relaxation rates. Only very few experimental techniques can access dynamical properties in biological materials on the nanometer scale, and resolve dynamics of lipid molecules, hydration water molecules and proteins and the interaction between them. In this context, inelastic neutron scattering turned out to be a very powerful tool to study dynamics and interactions in biomolecular materials up to relevant nanosecond time scales and down to the nanometer length scale. We review and discuss inelastic neutron scattering experiments to study membrane elasticity and protein-protein interactions of membrane embedded proteins

    Stochastic simulations of cargo transport by processive molecular motors

    Full text link
    We use stochastic computer simulations to study the transport of a spherical cargo particle along a microtubule-like track on a planar substrate by several kinesin-like processive motors. Our newly developed adhesive motor dynamics algorithm combines the numerical integration of a Langevin equation for the motion of a sphere with kinetic rules for the molecular motors. The Langevin part includes diffusive motion, the action of the pulling motors, and hydrodynamic interactions between sphere and wall. The kinetic rules for the motors include binding to and unbinding from the filament as well as active motor steps. We find that the simulated mean transport length increases exponentially with the number of bound motors, in good agreement with earlier results. The number of motors in binding range to the motor track fluctuates in time with a Poissonian distribution, both for springs and cables being used as models for the linker mechanics. Cooperativity in the sense of equal load sharing only occurs for high values for viscosity and attachment time.Comment: 40 pages, Revtex with 13 figures, to appear in Journal of Chemical Physic

    Cooperative Cargo Transport by Several Molecular Motors

    Full text link
    The transport of cargo particles which are pulled by several molecular motors in a cooperative manner is studied theoretically. The transport properties depend primarily on the maximal number, NN, of motor molecules that may pull simultaneously on the cargo particle. Since each motor must unbind from the filament after a finite number of steps but can also rebind to it again, the actual number of pulling motors is not constant but varies with time between zero and NN. An increase in the maximal number NN leads to a strong increase of the average walking distance (or run length) of the cargo particle. If the cargo is pulled by up to NN kinesin motors, e.g., the walking distance is estimated to be 5N1/N5^{N-1}/N micrometers which implies that seven or eight kinesin molecules are sufficient to attain an average walking distance in the centimeter range. If the cargo particle is pulled against an external load force, this force is shared between the motors which provides a nontrivial motor-motor coupling and a generic mechanism for nonlinear force-velocity relationships. With increasing load force, the probability distribution of the instantenous velocity is shifted towards smaller values, becomes broader, and develops several peaks. Our theory is consistent with available experimental data and makes quantitative predictions that are accessible to systematic in vitro experiments.Comment: 24 pages, latex, 6 figures, includes Supporting Tex

    Impact of slip cycles on the operation modes and efficiency of molecular motors

    Get PDF

    Phase transitions in systems with two species of molecular motors

    Full text link
    Systems with two species of active molecular motors moving on (cytoskeletal) filaments into opposite directions are studied theoretically using driven lattice gas models. The motors can unbind from and rebind to the filaments. Two motors are more likely to bind on adjacent filament sites if they belong to the same species. These systems exhibit (i) Continuous phase transitions towards states with spontaneously broken symmetry, where one motor species is largely excluded from the filament, (ii) Hysteresis of the total current upon varying the relative concentrations of the two motor species, and (iii) Coexistence of traffic lanes with opposite directionality in multi-filament systems. These theoretical predictions should be experimentally accessible.Comment: 7 pages, 4 figures, epl style (.cls-file included), to appear in Europhys. Lett. (http://www.edpsciences.org/epl

    Segregation of receptor-ligand complexes in cell adhesion zones: Phase diagrams and role of thermal membrane roughness

    Full text link
    The adhesion zone of immune cells, the 'immunological synapse', exhibits characteristic domains of receptor-ligand complexes. The domain formation is likely caused by a length difference of the receptor-ligand complexes, and has been investigated in experiments in which T cells adhere to supported membranes with anchored ligands. For supported membranes with two types of anchored ligands, MHCp and ICAM1, that bind to the receptors TCR and LFA1 in the cell membrane, the coexistence of domains of TCR-MHCp and LFA1-ICAM1 complexes in the cell adhesion zone has been observed for a wide range of ligand concentrations and affinities. For supported membranes with long and short ligands that bind to the same cell receptor CD2, in contrast, domain coexistence has been observed for a rather narrow ratio of ligand concentrations. In this article, we determine detailed phase diagrams for cells adhering to supported membranes with a statistical-physical model of cell adhesion. We find a characteristic difference between the adhesion scenarios in which two types of ligands in a supported membrane bind (i) to the same cell receptor or (ii) to two different cell receptors, which helps to explain the experimental observations. Our phase diagrams fully include thermal shape fluctuations of the cell membranes on nanometer scales, which lead to a critical point for the domain formation and to a cooperative binding of the receptors and ligands.Comment: 23 pages, 6 figure

    Domain Growth, Budding, and Fission in Phase Separating Self-Assembled Fluid Bilayers

    Full text link
    A systematic investigation of the phase separation dynamics in self-assembled multi-component bilayer fluid vesicles and open membranes is presented. We use large-scale dissipative particle dynamics to explicitly account for solvent, thereby allowing for numerical investigation of the effects of hydrodynamics and area-to-volume constraints. In the case of asymmetric lipid composition, we observed regimes corresponding to coalescence of flat patches, budding, vesiculation and coalescence of caps. The area-to-volume constraint and hydrodynamics have a strong influence on these regimes and the crossovers between them. In the case of symmetric mixtures, irrespective of the area-to-volume ratio, we observed a growth regime with an exponent of 1/2. The same exponent is also found in the case of open membranes with symmetric composition
    corecore