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EUROPHYSICS LETTERS 15 January 2000

Wetting between structured surfaces:
Liquid bridges and induced forces

P. S. Swain and R. Lipowsky

Max-Planck Institut für Kolloid- und Grenzflächenforschung - 14424 Potsdam, Germany

(received 26 August 1999; accepted 4 November 1999)

PACS. 68.35.Bs – Surface structure and topography.

PACS. 68.45.Gd – Wetting.

Abstract. – Wetting phenomena are theoretically studied for a slab geometry consisting of a
wetting phase confined between two chemically patterned substrates. Each of these is decorated
by an array of stripes whose composition alternates between two different surface phases. For
a single pair of opposing stripes, the wetting phase may either form a bridge spanning from one
surface to the other or it may break up into two separate channels. The bridge state induces
an effective interaction between the two substrates. This leads to the bridge itself having a
preferred contact angle and the substrates having a preferred separation. In the case of many
stripes, one has a whole sequence of morphological transitions with the number of bridges
decreasing as the surface separation grows.

Consider a liquid, say β, at or close to two-phase coexistence with another fluid phase
α, and which is located within a slab between two solid substrates. If both of these have
homogeneous surfaces, they may, depending on their chemical nature, be either wetted or
dewetted by β. Let us assume that the substrates contain two types of surface domain,
denoted by γ and δ, which attract and repel the β-phase, respectively. In such a situation,
the β liquid will try to maximise its contact with the γ domains on both surfaces, while trying
to avoid the δ regions. In this way, the morphology of the intervening wetting structure will
reflect the underlying chemical patterning of the two substrates.

From a theoretical point of view, the wetting of structured substrates exhibits several
unusual features which have been recently brought to light through studies of single surfaces
[1–3]. One important new finding is that these systems can undergo morphological transitions
in which the wetting phase experiences an abrupt change in shape.

In this letter, we will study the possible wetting morphologies within a structured slab. We
will focus on the simplest type of substrate pattern, consisting of alternating γ- and δ-stripes.
These are of width Lγ , length Lγδ and lie parallel to but not necessarily exactly opposite a
stripe on the other surface. Any mismatch is described by L‖ (see fig. 1). A similar geometry,
though with sinusoidally structured substrates, has been recently studied by Monte Carlo
simulations [4] and by density functional theory [5].

We will concentrate on wetting structures which are, at least, of the size of microns and
so ignore line tension. Furthermore, the roughness of the αβ interfaces is always small and
c© EDP Sciences
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Fig. 1 – Different β-phase morphologies within a structured slab. Dark γ patches on the substrate
attract β while light δ regions are repulsive. For ∆p < 0, either a bridge state that bulges outwards
or the two-channel state exists. For ∆p > 0, M changes sign and the bridge curves inwards.

comparable to the size of the molecules. Thus, it is sufficient to adopt a mean-field approach
and consider only arrangements of the β-phase which are minima of the free energy. Defining
Σ as the interfacial free energy of the αβ interface, the latter is

F = ΣAαβ − (Σwα − Σwβ)Awβ + ∆p V . (1)

Here, Σwα and Σwβ are the interfacial free energies between the wall and the α and β phases,
respectively. Due to the chemical heterogeneity of the surface these will be a function of
position. There is a volume V of β which interfaces with a contact area Awβ to the substrate
surface and with an area Aαβ to the α phase. Finally, we need to choose an appropriate
ensemble to work in. One can fix the pressure difference, defined as ∆p = pα − pβ , across
all αβ interfaces. This then leads to a term in (1) representing the work done against ∆p to
create V of β. It is a genuine contribution to the free energy. Alternatively, one can opt for
a fixed volume ensemble, in which the total volume of β in the system is confined to V . In
this case, the ∆p V term still appears but does so only to enforce the volume constraint. The
parameter ∆p is a Lagrange multiplier and should be ignored in any calculations of the free
energy.

Minimising (1) with respect to the shape of the β-surface leads to the Laplace equation,
∆p = −2ΣM , where M is the mean curvature of the αβ interface. Further minimisation
with respect to the configuration of the three phase (α-β-substrate) contact line, gives the
generalised Young equation [2, 6]

Σwα(x) = Σwβ(x) + Σ cos [θ(x)] (2)

for the contact angle θ. As already mentioned, the chemical patterning results in a contact
angle which varies with position. Here, x is a vector in the plane of the surface under con-
sideration. Regarding, for the moment, a single substrate, let θδ and θγ be the contact angles
taken up on the more lyophobic (α favouring) and more lyophilic (β favouring) regions, re-
spectively. Then, the contact angle of the β-phase will continually shift between these two
values as its contact line crosses each chemically distinct area. Moving from a γ to a δ patch,
θ will gradually increase from θγ to θδ. This change will occur in a narrow border region
between the two chemically pure sections. If surfaces are considered for which the width of
these border regions are small compared to the linear size of the domains themselves, then the
substrate interfacial free energies, Σwα and Σwβ , become almost discontinuous. Equation (2)
then implies that at this γδ divide, the contact angle is not specified but is simply bounded;
θγ ≤ θ ≤ θδ [2]. If a drop is large enough that it entirely covers the lyophilic region, then the
freedom in θ implies that the drop’s shape will change as one alters either its volume or ∆p.

For simplicity, we will take the extreme cases of θγ = 0 and θδ = π, i.e. complete wetting
and complete dewetting of the γ- and δ-domains, respectively. This means that, providing V
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is of a certain size, the lyophilic areas will nearly always be covered and the lyophobic domains
nearly always left clear. The contact line is “pinned” to the γδ border.

Before proceeding, we remark that our system is effectively two-dimensional since we
consider very long stripes with Lγδ À Lγ and ignore the possibility of symmetry breaking
configurations (see [3] for a counterexample). Thus, each bridge will have a constant cross-
section whose contour we need only determine. The Laplace equation implies that all β-phase
surfaces will be of fixed mean curvature, M = −∆p/2Σ, and so that the contour line will be
a segment from a circle whose radius, R, obeys

R = Σ/|∆p| . (3)

The different possible configurations are shown in fig. 1. When L⊥ becomes large enough a
β-bridge is no longer stable and breaks into two β-channels (again these have constant cross-
section and each cover an entire lyophilic stripe). In addition to this broken state, one can
have a bridge bulging outwards (∆p < 0) and one which curves inwards (∆p > 0). Our remit
is to find which of these morphologies are stable as one changes L⊥ and/or L‖.

Considering an isolated pair of stripes (one on each substrate), elementary geometry implies
that the reduced volumes, V̄ = V/Lγδ, are given by

V̄ch = 2R2Ψ(Lγ/2R) (4)

for the channel state, with contact angle θ ≤ π/2 and Ψ(x) = arcsin x − x
√

1 − x2; while

V̄ in
out

= LγL⊥ ∓ 2R2Ψ
(√

L2
⊥ + L2

‖/2R
)

(5)

for the bridge. Here “in” and “out” refer to bridges with ∆p positive and negative, respectively.
In order to calculate the free energies of these possible shapes (and so find the most

stable one), the ensemble needs to be specified. Using (1) with w = γ, and remembering
that Σγα − Σγβ = Σ cos θγ = Σ since θγ = 0, we find for the reduced free energies, F̄ =
F/(ΣαβLγδ), the simple expressions

F̄ch = 4R arcsin(Lγ/2R) − 2Lγ and F̄br = 4R arcsin
(√

L2
⊥ + L2

‖/2R
)
− 2Lγ (6)

in the constant-volume ensemble. For the constant-pressure case, the ∆p V̄ term in (1),
specified by (3) and (4), (5), should be added.

The fixed-pressure ensemble has the simplest morphology diagram. For ∆p < 0, we can
only have bridges which bulge outwards. These become unstable when their free energy is
equal to that of the two-channel state and the corresponding transition line is given by

4R2 arcsin
(√

L2
⊥ + L2

‖/2R
)
− V̄out(R) = 4R2 arcsin(Lγ/2R) − V̄ch(R) . (7)

Equation (3) defines R in terms of ∆p, and (7) describes an arc dividing the upper right-hand
quadrant of the L‖L⊥ plane. For low L⊥, one has a bridge; while for high, always the channel
state. For ∆p > 0, the change in the sign of M implies that the “in”-bridge can only coexist
with a thin-film state, whose shape is governed by the interplay between the pressure and
intermolecular forces. Since we can ignore these forces on the mesoscopic scales considered
here, the film is characterised by V = 0 and Aαβ = Aβγ . Hence from (1), it has zero free
energy, and the transition line is then given by F̄br + V̄in/R = 0. As ∆p becomes small, both
transition lines tend to the circle given by L2

⊥ + L2
‖ ≈ L2

γ .
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Fig. 2 – Morphology diagram for a single pair of γ-stripes of width Lγ and with L‖ = 0. Four different
regions are present, see text. The arrows on the sketches of the sliding bridges indicate the direction
of slide as the volume is increased/decreased for the “out”/“in” cases.

The constant-volume ensemble, however, is more interesting and we will concentrate on
it for the remainder of the paper. Given a fixed volume of β-phase, R can be calculated by
setting the right-hand side of (4) or (5) equal to that volume. One needs then only to compare
(6) to find the most likely state. The result is shown in fig. 2 for the simple case when L‖ = 0.
There exist four main morphologies that have their own regions of stability. In area I, a
“sliding” bridge is the stable configuration. The value of L⊥ is so small and the volume of
β so large that the bridge bulges outwards as much as possible and attains a contact angle
of θ = θδ = π. Consequently, for large volumes the αβ interface is forced to move onto the δ
region. We refer to this state as a “sliding” bridge as each of its surfaces, which are perfect half
circles, will drift across the δ region either towards or away from the γ stripe, as the volume
shrinks or grows, respectively. At the morphology boundary, the bridge surfaces follow the
γδ divide, and in region II, where the bridge is still stable, they remain pinned there. The
dashed line in fig. 2 marks where a bridge changes from an “out” to an “in” configuration as
L⊥ increases. The bridge breaks in region III and the two-channel state has the lowest free
energy. Finally, IV indicates a region where the contact angle of the bridge has been reduced
to θ = θγ = 0 and so, for low volumes, the bridge retreats back on the lyophilic stripe. For
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Fig. 3 – The morphology and force diagrams for a system with a fixed volume, V̄ = 3L2
γ . On the

dash-dotted line in (a) the bridge is rectangular. (b) shows K̄‖ < 0 (dashed curve) and K̄⊥ (heavy
line), which changes sign at θ = θ∗. The value of θ is increased by decreasing L⊥ and the curves are
limited by the bridge becoming unstable (low θ) or touching the δ regions (high θ).



P. S. Swain et al.: Wetting between structured surfaces 207

real systems, the sliding bridges of I and IV may well be replaced by states which are not
translationally invariant along the stripes and so no longer have a constant cross-section. An
example for L‖ 6= 0 is shown in fig. 3a, with the different regimes having the same definitions
as above.

The existence of a β-bridge spanning the two substrates implies that an attempt to move
either of them will experience a force as the shape of the bridge changes. We shall consider
only the force generated in response to shifting the substrates in directions normal, K̄⊥, and
parallel, K̄‖, to their surfaces. These are defined as K̄⊥ ≡ −∂F̄br/∂L⊥ and K̄‖ ≡ −∂F̄br/∂L‖,
and have to be rescaled by ΣLγδ before having the correct dimensions. Working in the fixed-
volume ensemble, we find, after some algebra, that the perpendicular force is given by

K̄⊥ = 2
{

L⊥ cos(φ + θ) − Lγ sin(φ + θ)
}

/
√

L2
⊥ + L2

‖ (8)

and the parallel force by
K̄‖ = 2L‖ cos(φ + θ)/

√
L2
⊥ + L2

‖ , (9)

where tanφ = L⊥/L‖ and θ is defined to be the contact angle in the bottom left-hand corner
of the bridge, see fig. 1. Using (5), one can calculate R for a fixed V̄ , which is then simply
related to θ via sin(φ + θ) = ∓

√
L2
⊥ + L2

‖/2R, for “out”- and “in”-bridges, respectively. It is

worth remarking that K̄‖ is always negative (it can be shown that π/2 ≤ φ + θ ≤ 3π/2) and
so there is always resistance to shearing the substrates. However, there exists a characteristic
contact angle θ∗ for which K̄⊥ changes sign. From (8),

tan(φ + θ∗) = L⊥/Lγ (10)

which becomes tan θ∗ = −Lγ/L⊥ for L‖ = 0. Note that π − φ < θ∗ < 3π/2 − φ and so K̄⊥
only vanishes when ∆p < 0 , i.e. for an “out” bridge. One can show that the free energy has
a minimum as a function of θ at θ = θ∗. Thus, K̄⊥ always acts to bring the system into a
configuration for which the bridge contact angle is θ∗. The typical behaviour of the forces, as
a function of θ, is shown in fig. 3b.

Finally, we consider scenarios where the substrates are decorated with identical periodic
arrays of stripes. Let the number of pairs of stripes and the number of bridges present be Nst

and Nbr, respectively. For the pressure ensemble, each pair of stripes will act independently
and the corresponding phase diagram will be identical to that described above for a single
pair. However, in the volume ensemble, where, after any small perturbation, the β-phase is
allowed to re-distribute to its most stable configuration, the situation is quite different. The
material transport, which is expected to be relatively slow if α is a vapour phase but quite
fast if it is another liquid, implies a cooperative behaviour between the different morphologies.

In addition to the bridges, channels and thin films already discussed, one should also
include a layered state, with flat layers of β-phase on each surface covering both lyophobic
and lyophilic regions. To calculate its free energy, F̄la, we need to specify the width of the
δ-stripes; let this be Lδ. Using (1) and remembering that θγ = 0 and θδ = π, we find
F̄la = 4NstLδ. For a given system, the stable state can then be found by comparing the free
energies of all possible combinations of the different morphologies.

In fig. 4a we show Nbr for 100 pairs of stripes (sliding is not included) as L⊥ is varied.
The system has to have a certain size before it can accommodate all the β-phase, but then
the large volume forces it to exist in the layered state (Nst ≡ −1). As soon as bridges can
exist, they cover all the γ-stripes. This is then followed by a gradual cascade in their number.
From (6), the free energy, as a function of the mean curvature M , is only properly defined
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Fig. 4 – Structured slab with many γ stripes, L‖ = 0 and Lδ = 3Lγ . The (reduced) volume of the
β-phase in each case is NstL

2
γ . In (a), a system with Nst = 100 is shown. The stable number of bridges

gradually reduces as L⊥ is increased. The inset is an enlargement of part of the curve. (b) gives the
maximum value of L⊥ for which a bridge can exist as a function of the number of stripes.

for 0 ≤ M ≤ min(L−1
γ , L−1

⊥ ). For Nst À 1, it transpires that if L⊥ > L
(1)
⊥ (V̄ /Nst), the total

free energy no longer has a true minimum but is optimised by an endpoint value of M , i.e.
M = L−1

⊥ . For example, when V̄ /Nst = L2
γ , one has L

(1)
⊥ ' 1.91Lγ . The volume constraint

then gives that
Nbr = (V̄ − NstV̄ch)/(V̄br − V̄ch)

∣∣
R=L⊥/2

, (11)

which represents an implicit equation for those L⊥ at which Nbr undergoes an abrupt change.
Equation (11) implies Nbr ∼ L−2

⊥ for large L⊥. For L⊥ > L
(1)
⊥ , the contact angle θ = π and

consequently sliding effects can become important. Indeed, there exist two regimes, where
bridges detached from the lyophilic stripes are the most stable states. For L⊥ < L

(0)
⊥ ≡

2Lγ

[√
1 + πV̄ /(NstL2

γ) − 1
]
/π, the system prefers to exists as Nst bridges, all of which have

swollen so much that they have slid off their original γ-stripe, rather than being in the layered
state. Similarly, for large L⊥ > L

(2)
⊥ ≡ λ−1Lγ , a single sliding bridge is the equilibrium

morphology. Here, λ−1 ' 2.51 and obeys λ(2 +
√

1 − λ2) = arccos λ. As L⊥ is increased
further, the width of this bridge gradually decreases as it moves inwards. Eventually, it
reattaches and its curvature falls below L−1

⊥ . So far, we have implicitly assumed that Lδ À Lγ .
If this is not true the situation becomes even more complicated as the detached bridges will
cover more than one lyophilic region. However, in real systems, we would expect the sliding
states to be precursors to morphologies which break both the x1 and x2 symmetries. Such
“modified” drops have already been observed experimentally [7].

In fig. 4b, we plot, for a system with a given Nst, the highest value of L⊥ for which a
bridge can exist. This has direct experimental relevance as it is the maximum L⊥ for which
a force acts between the two substrates.

In summary, we have investigated wetting phenomena occurring between two, flat, parallel,
lyophobic substrates each of which is structured by lyophilic stripes. We have shown that a
number of different morphologies of the wetting phase are possible. In particular, a bridge
can span from a lyophilic stripe on one surface to another on the opposite surface and so
cause a force to act between the substrates. This can be attractive or repulsive and vanishes
at a special contact angle of the bridge, θ∗. Our model also predicts regimes where the
bridge detaches from the stripes, which could well be precursors for transitions to broken-
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symmetry states. When many stripes are considered, we can find analytically the number
of stable bridges as the substrates are pulled apart. Experimentally, a slab geometry can be
realised by, for example, the two opposing surfaces of a surface force apparatus. Similarly, an
atomic force microscope consists of a highly curved surface, the “tip”, which is brought into
contact with another, less curved, surface. These surfaces can be structured using the many
preparation methods which are now available. These include elastomer stamps [8, 9] vapour
deposition through grids [7,10], photolithography of amphiphilic monolayers [11], lithography
with colloid monolayers [12], atomic beams modulated by light masks [13] and microphase
separation in diblock copolymer films [14]. Recent observations of water bridges which can
form between the tip of an atomic force microscope and the surface which it is patterning [15],
have given new relevance to our work and, in a following publication, we will extend the results
to include substrates decorated with circular lyophilic domains.
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