A systematic investigation of the phase separation dynamics in self-assembled
multi-component bilayer fluid vesicles and open membranes is presented. We use
large-scale dissipative particle dynamics to explicitly account for solvent,
thereby allowing for numerical investigation of the effects of hydrodynamics
and area-to-volume constraints. In the case of asymmetric lipid composition, we
observed regimes corresponding to coalescence of flat patches, budding,
vesiculation and coalescence of caps. The area-to-volume constraint and
hydrodynamics have a strong influence on these regimes and the crossovers
between them. In the case of symmetric mixtures, irrespective of the
area-to-volume ratio, we observed a growth regime with an exponent of 1/2. The
same exponent is also found in the case of open membranes with symmetric
composition