1,124 research outputs found

    Family functioning, identity commitments, and school value among ethnic minority and ethnic majority adolescents

    Get PDF
    Ethnic minority youth show worse school adjustment than their ethnic majority peers. Yet, it remains unclear whether this gap can be explained by differences in family functioning and consequent identity commitments. This study examined (1) whether family functioning relates to identity commitments over time and (2) whether identity commitments impact later school value (3) among minority and majority adolescents. Minority (N = 205, Mage = 16.25 years, 31.1% girls) and majority adolescents (N = 480, Mage = 15.73 years, 47.9% girls) participated in this preregistered three-wave longitudinal study (T1: March-April 2012; T2: October 2012; T3: March-April 2013). Dynamic Panel Models revealed that most within-person cross-lagged associations were not significant in the total sample. Yet, multigroup analyses revealed differences between groups: Stronger identity commitments related to lower school value among minority adolescents, but were unrelated to school value among majority adolescents over time. Additionally, higher school value increased identity commitments among minority youth, yet it decreased identity commitments among majority youth over time. The findings highlight the differential interplay between identity commitments and school adjustment for minority and majority adolescents, with important implications for their future life chances

    Efficacy of adalimumab as second-line therapy in a pediatric cohort of crohn’s disease patients who failed infliximab therapy: The Italian society of pediatric gastroenterology, hepatology, and nutrition experience

    Get PDF
    Background: Adalimumab (Ada) treatment is an available option for pediatric Crohn’s disease (CD) and the published experience as rescue therapy is limited. Objectives: We investigated Ada efficacy in a retrospective, pediatric CD cohort who had failed previous infliximab treatment, with a minimum follow-up of 6 months. Methods: In this multicenter study, data on demographics, clinical activity, growth, laboratory values (CRP) and adverse events were collected from CD patients during follow-up. Clinical remission (CR) and response were defined with Pediatric CD Activity Index (PCDAI) score ≤10 and a decrease in PCDAI score of ≥12.5 from baseline, respectively. Results: A total of 44 patients were consecutively recruited (mean age 14.8 years): 34 of 44 (77%) had active disease (mean PCDAI score 24.5) at the time of Ada administration, with a mean disease duration of 3.4 (range 0.3–11.2) years. At 6, 12, and 18 months, out of the total of the enrolled population, CR rates were 55%, 78%, and 52%, respectively, with a significant decrease in PCDAI scores (P<0.01) and mean CRP values (mean CRP 5.7 and 2.4 mL/dL, respectively; P<0.01) at the end of follow-up. Steroid-free remission rates, considered as the total number of patients in CR who were not using steroids at the end of this study, were 93%, 95%, and 96% in 44 patients at 6, 12, and 18 months, respectively. No significant differences in growth parameters were detected. In univariate analysis of variables related to Ada efficacy, we found that only a disease duration >2 years was negatively correlated with final PCDAI score (P<0.01). Two serious adverse events were recorded: 1 meningitis and 1 medulloblastoma. Conclusion: Our data confirm Ada efficacy in pediatric patients as second-line biological therapy after infliximab failure. Longer-term prospective data are warranted to define general effectiveness and safety in pediatric CD patients

    Barley beta-glucan promotes MnSOD expression and enhances angiogenesis under oxidative microenvironment

    Get PDF
    Manganese superoxide dismutase (MnSOD), a foremost antioxidant enzyme, plays a key role in angiogenesis. Barley-derived (1.3) β-d-glucan (β-d-glucan) is a natural water-soluble polysaccharide with antioxidant properties. To explore the effects of β-d-glucan on MnSOD-related angiogenesis under oxidative stress, we tested epigenetic mechanisms underlying modulation of MnSOD level in human umbilical vein endothelial cells (HUVECs) and angiogenesis in vitro and in vivo. Long-term treatment of HUVECs with 3% w/v β-d-glucan significantly increased the level of MnSOD by 200% Â± 2% compared to control and by 50% Â± 4% compared to untreated H2O2-stressed cells. β-d-glucan-treated HUVECs displayed greater angiogenic ability. In vivo, 24 hrs-treatment with 3% w/v β-d-glucan rescued vasculogenesis in Tg (kdrl: EGFP) s843Tg zebrafish embryos exposed to oxidative microenvironment. HUVECs overexpressing MnSOD demonstrated an increased activity of endothelial nitric oxide synthase (eNOS), reduced load of superoxide anion (O2-) and an increased survival under oxidative stress. In addition, β-d-glucan prevented the rise of hypoxia inducible factor (HIF)1-α under oxidative stress. The level of histone H4 acetylation was significantly increased by β-d-glucan. Increasing histone acetylation by sodium butyrate, an inhibitor of class I histone deacetylases (HDACs I), did not activate MnSOD-related angiogenesis and did not impair β-d-glucan effects. In conclusion, 3% w/v β-d-glucan activates endothelial expression of MnSOD independent of histone acetylation level, thereby leading to adequate removal of O2-, cell survival and angiogenic response to oxidative stress. The identification of dietary β-d-glucan as activator of MnSOD-related angiogenesis might lead to the development of nutritional approaches for the prevention of ischemic remodelling and heart failure

    Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis

    Get PDF
    Muscle dysfunction is a common feature of severe sepsis and multi-organ failure. Recent evidence implicates bioenergetic dysfunction and oxidative damage as important underlying pathophysiological mechanisms. Increased abundance of uncoupling protein-3 (UCP-3) in sepsis suggests increased mitochondrial proton leak, which may reduce mitochondrial coupling efficiency but limit ROS production. Using a murine model, we examined metabolic, cardiovascular and skeletal muscle contractile changes following induction of peritoneal sepsis in wild-type and Ucp3(-/-) mice. Mitochondrial membrane potential (Δψm) was measured using two-photon microscopy in living diaphragm, and contractile function was measured in diaphragm muscle strips. The kinetic relationship between membrane potential and oxygen consumption was determined using a modular kinetic approach in isolated mitochondria. Sepsis was associated with significant whole body metabolic suppression, hypothermia and cardiovascular dysfunction. Maximal force generation was reduced and fatigue accelerated in ex vivo diaphragm muscle strips from septic mice. Mitochondrial membrane potential was lower in the isolated diaphragm from septic mice despite normal substrate oxidation kinetics and proton leak in skeletal muscle mitochondria. Even though wild-type mice exhibited an absolute 26 ± 6% higher UCP-3 protein abundance at 24 hours, no differences were seen in whole animal or diaphragm physiology, nor in survival rates, between wild-type and Ucp3(-/-) mice. In conclusion, this murine sepsis model shows a hypometabolic phenotype with evidence of significant cardiovascular and muscle dysfunction. This was associated with lower Δψm and alterations in mitochondrial ATP turnover and phosphorylation pathway. However, UCP-3 does not play an important functional role, despite its upregulation

    Unjamming of active rotators

    Get PDF
    Active particle assemblies can exhibit a wide range of interesting dynamical phases depending on internal parameters such as density, adhesion strength or self-propulsion. Active self-rotations are rarely studied in this context, although they can be relevant for active matter systems, as we illustrate by analyzing the motion of Chlamydomonas reinhardtii algae under different experimental conditions. Inspired by this example, we simulate the dynamics of a system of interacting active disks endowed with active torques and self-propulsive forces. At low packing fractions, adhesion causes the formation of small rotating clusters, resembling those observed when algae are stressed. At higher densities, the model shows a jamming to unjamming transition promoted by active torques and hindered by adhesion. We also study the interplay between self-propulsion and self-rotation and derive a phase diagram. Our results yield a comprehensive picture of the dynamics of active rotators, providing useful guidance to interpret experimental results in cellular systems where rotations might play a role

    Pacing-induced regional differences in adenosine receptors mRNA expression in a Swine model of dilated cardiomyopathy.

    Get PDF
    The adenosinergic system is essential in the mediation of intrinsic protection and myocardial resistance to insult; it may be considered a cardioprotective molecule and adenosine receptors (ARs) represent potential therapeutic targets in the setting of heart failure (HF). The aim of the study was to test whether differences exist between mRNA expression of ARs in the anterior left ventricle (LV) wall (pacing site: PS) compared to the infero septal wall (opposite region: OS) in an experimental model of dilated cardiomyopathy. Cardiac tissue was collected from LV PS and OS of adult male minipigs with pacing-induced HF (n = 10) and from a control group (C, n = 4). ARs and TNF-α mRNA expression was measured by Real Time-PCR and the results were normalized with the three most stably expressed genes (GAPDH, HPRT1, TBP). Immunohistochemistry analysis was also performed. After 3 weeks of pacing higher levels of expression for each analyzed AR were observed in PS except for A1R (A1R: C = 0.6±0.2, PS = 0.1±0.04, OS = 0.04±0.01, p<0.0001 C vs. PS and OS respectively; A2AR: C = 1.04±0.59, PS = 2.62±0.79, OS = 2.99±0.79; A2BR: C = 1.2±0.1, PS = 5.59±2.3, OS = 1.59±0.46; A3R: C = 0.76±0.18, PS = 8.40±3.38, OS = 4.40±0.83). Significant contractile impairment and myocardial hypoperfusion were observed at PS after three weeks of pacing as compared to OS. TNF-α mRNA expression resulted similar in PS (6.3±2.4) and in OS (5.9±2.7) although higher than in control group (3.4±1.5). ARs expression was mainly detected in cardiomyocytes. This study provided new information on ARs local changes in the setting of LV dysfunction and on the role of these receptors in relation to pacing-induced abnormalities of myocardial perfusion and contraction. These results suggest a possible therapeutic role of adenosine in patients with HF and dyssynchronous LV contraction
    • …
    corecore