140 research outputs found

    Intercomparison of air ion spectrometers: An evaluation of results in varying conditions

    Get PDF
    We evaluated 11 air ion spectrometers from Airel Ltd. after they had spent one year in field measurements as a part of the EUCAARI project: 5 Air Ion Spectrometers (AIS), 5 Neutral cluster and Air Ion Spectrometers (NAIS) and one Airborne NAIS (ANAIS). This is the first time that an ANAIS is evaluated and compared so extensively. The ion spectrometers' mobility and concentration accuracy was evaluated. Their measurements of ambient air were compared between themselves and to reference instruments: a Differential Mobility Particle Sizer (DMPS), a Balanced Scanning Mobility Analyzer (BSMA), and an Ion-DMPS. We report on the simultaneous measurement of a new particle formation (NPF) event by all 11 instruments and the 3 reference instruments. To our knowledge, it is the first time that the size distribution of ions and particles is measured by so many ion spectrometers during a NPF event. The new particle formation rates (~0.2 cm−3 s−1 for ions and ~2 cm−3 s−1 for particles) and growth rates (~25 nm h−1 in the 3–7 nm size range) were calculated for all the instruments. The NAISs and the ANAIS gave higher concentrations and formation rates than the AISs. For example, the AISs agreed with the BSMA within 11 % and 28 % for negative and positive ion concentration respectively, whereas the NAISs agreed within 23 % and 29 %. Finally, based on the results presented here, we give guidelines for data evaluation, when data from different individual ion spectrometers are compared

    High concentrations of sub-3nm clusters and frequent new particle formation observed in the Po Valley, Italy, during the PEGASOS 2012 campaign

    Get PDF
    The concentrations of neutral and charged sub3nm clusters and their connection to new particle formation (NPF) were investigated during the PEGASOS campaign (7 June-9 July 2012) at the San Pietro Capofiume measurement station in the Po Valley, Italy. Continuous high concentrations of sub-3nm clusters were detected during the measurement period, although the condensation sink was relatively high (median value 1.1 x 10(-2) s(-1)). The median cluster concentrations were 2140 and 7980 cm 3 in the size bins of 1.5-1.8 and 1.8-3 nm, and the majority of them were electrically neutral. NPF events were observed during the measurement period frequently, on 86% of the days. The median growth rates of clusters during the events were 4.3, 6.0 and 7.2 nm h(-1) in the size ranges of 1.5-3, 3-7 and 720 nm. The median formation rate of 1.6 nm clusters was high, 45 cm 3 s(-1), and it exceeded the median formation rate of 2 nm clusters by 1 order of magnitude. The ion-induced nucleation fraction was low; the median values were 0.7% at 1.6 nm and 3.0% at 2 nm. On NPF event days the neutral cluster concentration had a maximum around 09: 00 (local winter time), which was absent on a non-event day. The increase in the cluster concentrations in the morning coincided with the increase in the boundary layer height. At the same time radiation, temperature and SO2 concentration increased, and RH and condensation sink decreased. The concentrations of neutral and charged clusters were observed to have a positive correlation with sulfuric acid proxy, indicating the significance of sulfuric acid for the cluster formation in San Pietro Capofiume. The condensation sink had a negative correlation with the concentration of charged clusters but no clear relation to the neutral cluster concentration. This finding, together with back-trajectory analysis, suggests that the precursor vapors of the clusters and background aerosol particles, acting as their sink, have possibly originated from the same sources, including e.g., power plants and industrial areas in the Po Valley.Peer reviewe

    Vertical profiles of sub-3nm particles over the boreal forest

    Get PDF
    This work presents airborne observations of sub-3 nm particles in the lower troposphere and investigates new particle formation (NPF) within an evolving boundary layer (BL). We studied particle concentrations together with supporting gas and meteorological data inside the planetary BL over a boreal forest site in Hyytiala, southern Finland. The analysed data were collected during three flight measurement campaigns: May-June 2015, August 2015 and April-May 2017, including 27 morning and 26 afternoon vertical profiles. As a platform for the instrumentation, we used a Cessna 172 aircraft. The analysed flight data were collected horizontally within a 30 km distance from SMEAR II in Hyytiala and vertically from 100 m above ground level up to 2700 m. The number concentration of 1.5-3 nm particles was observed to be, on average, the highest near the forest canopy top and to decrease with increasing altitude during the mornings of NPF event days. This indicates that the precursor vapours emitted by the forest play a key role in NPF in Hyytiala. During daytime, newly formed particles were observed to grow in size and the particle population became more homogenous within the well-mixed BL in the afternoon. During undefined days with respect to NPF, we also detected an increase in concentration of 1.5-3 nm particles in the morning but not their growth in size, which indicates an interrupted NPF process during these undefined days. Vertical mixing was typically stronger during the NPF event days than during the undefined or non-event days. The results shed light on the connection between boundary layer dynamics and NPF.Peer reviewe

    Opinion: A paradigm shift in investigating the general characteristics of atmospheric new particle formation using field observations

    Get PDF
    Atmospheric new particle formation (NPF) and associated production of secondary particulate matter dominate aerosol particle number concentrations and submicron particle mass loadings in many environments globally. Our recent investigations show that atmospheric NPF produces a significant amount of particles on days when no clear NPF event has been observed/identified. Furthermore, it has been observed in different environments all around the world that growth rates of nucleation mode particles vary little, usually much less than the measured concentrations of condensable vapors. It has also been observed that the local clustering, which in many cases acts as a starting point of regional new particle formation (NPF), can be described with the formation of intermediate ions at the smallest sizes. These observations, together with a recently developed ranking method, lead us to propose a paradigm shift in atmospheric NPF investigations. In this opinion paper, we will summarize the traditional approach of describing atmospheric NPF and describe an alternative method, covering both particle formation and initial growth. The opportunities and remaining challenges offered by the new approach are discussed.</p

    Intercomparison of air ion spectrometers: an evaluation of results in varying conditions

    Get PDF
    We evaluated 11 air ion spectrometers from Airel Ltd. after they had spent one year in field measurements as a part of the EUCAARI project: 5 Air Ion Spectrometers (AIS), 5 Neutral cluster and Air Ion Spectrometers (NAIS) and one Airborne NAIS (ANAIS). This is the first time that an ANAIS is evaluated and compared so extensively. The ion spectrometers' mobility and concentration accuracy was evaluated. Their measurements of ambient air were compared between themselves and to reference instruments: a Differential Mobility Particle Sizer (DMPS), a Balanced Scanning Mobility Analyzer (BSMA), and an Ion-DMPS. We report on the simultaneous measurement of a new particle formation (NPF) event by all 11 instruments and the 3 reference instruments. To our knowledge, it is the first time that the size distribution of ions and particles is measured by so many ion spectrometers during a NPF event. The new particle formation rates (~0.2 cm&lt;sup&gt;−3&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt; for ions and ~2 cm&lt;sup&gt;−3&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt; for particles) and growth rates (~25 nm h&lt;sup&gt;−1&lt;/sup&gt; in the 3–7 nm size range) were calculated for all the instruments. The NAISs and the ANAIS gave higher concentrations and formation rates than the AISs. For example, the AISs agreed with the BSMA within 11 % and 28 % for negative and positive ion concentration respectively, whereas the NAISs agreed within 23 % and 29 %. Finally, based on the results presented here, we give guidelines for data evaluation, when data from different individual ion spectrometers are compared

    Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols

    Get PDF
    Aerosols of biogenic and anthropogenic origin affect the total radiative forcing of global climate. Poor knowledge of the pre-industrial aerosol concentration and composition, in particular of particles formed directly in the atmosphere from gaseous precursors, constitutes a large uncertainty in the anthropogenic radiative forcing. Investigations of new particle formation at pre-industrial-like conditions can contribute to the reduction of this uncertainty. Here we present observations taken at the remote Nepal Climate Observatory Pyramid station at 5,079 m above sea level, a few kilometres from the summit of Everest. We show that up-valley winds funnel gaseous aerosol precursors to higher altitudes. During this transport, these are oxidized into compounds of very low volatility, which rapidly form a large number of aerosol particles. These are then transported into the free troposphere, which suggests that the whole Himalayan region may act as an 'aerosol factory' and contribute substantially to the free tropospheric aerosol population. Aerosol production in this region occurs mainly via organic precursors of biogenic origin with little evidence of the involvement of anthropogenic pollutants. This process is therefore likely to be essentially unchanged since the pre-industrial period, and may have been one of the major sources that contributes to the upper tropospheric aerosol population during that time. Newly formed biogenic particles in the Himalaya increase free-tropospheric background aerosol concentration by a factor of up to two.Peer reviewe
    • …
    corecore