390 research outputs found
Existence and uniqueness for Mean Field Games with state constraints
In this paper, we study deterministic mean field games for agents who operate
in a bounded domain. In this case, the existence and uniqueness of Nash
equilibria cannot be deduced as for unrestricted state space because, for a
large set of initial conditions, the uniqueness of the solution to the
associated minimization problem is no longer guaranteed. We attack the problem
by interpreting equilibria as measures in a space of arcs. In such a relaxed
environment the existence of solutions follows by set-valued fixed point
arguments. Then, we give a uniqueness result for such equilibria under a
classical monotonicity assumption
The Master Equation for Large Population Equilibriums
We use a simple N-player stochastic game with idiosyncratic and common noises
to introduce the concept of Master Equation originally proposed by Lions in his
lectures at the Coll\`ege de France. Controlling the limit N tends to the
infinity of the explicit solution of the N-player game, we highlight the
stochastic nature of the limit distributions of the states of the players due
to the fact that the random environment does not average out in the limit, and
we recast the Mean Field Game (MFG) paradigm in a set of coupled Stochastic
Partial Differential Equations (SPDEs). The first one is a forward stochastic
Kolmogorov equation giving the evolution of the conditional distributions of
the states of the players given the common noise. The second is a form of
stochastic Hamilton Jacobi Bellman (HJB) equation providing the solution of the
optimization problem when the flow of conditional distributions is given. Being
highly coupled, the system reads as an infinite dimensional Forward Backward
Stochastic Differential Equation (FBSDE). Uniqueness of a solution and its
Markov property lead to the representation of the solution of the backward
equation (i.e. the value function of the stochastic HJB equation) as a
deterministic function of the solution of the forward Kolmogorov equation,
function which is usually called the decoupling field of the FBSDE. The
(infinite dimensional) PDE satisfied by this decoupling field is identified
with the \textit{master equation}. We also show that this equation can be
derived for other large populations equilibriums like those given by the
optimal control of McKean-Vlasov stochastic differential equations. The paper
is written more in the style of a review than a technical paper, and we spend
more time and energy motivating and explaining the probabilistic interpretation
of the Master Equation, than identifying the most general set of assumptions
under which our claims are true
A numerical approach for modelling thin cracked plates with XFEM
The modelization of bending plates with through the thickness cracks is investigated. We consider the Kirchhoff-Love plate model which is valid for very thin plates. We apply the eXtended Finite Element Method (XFEM) strategy: enrichment of the ïŹnite element space with the asymptotic bending and with the discontinuity across the crack. We present two variants and their numerical validations and also a numerical computation of the stress intensity factors
Zut! J'ai renversé ma pédagogie...
Une Ă©quipe de professeurs de physique du CĂ©gep John Abbott qui favorisait dĂ©jĂ lâapprentissage collaboratif et par les pairs dans ses classes cherchait un moyen de rendre ces stratĂ©gies pĂ©dagogiques encore plus efficaces. Car les discussions entre les Ă©tudiants, quoique trĂšs efficaces et apprĂ©ciĂ©es de tous, exigeaient beaucoup de temps en classe et limitaient la quantitĂ© de contenus pouvant y ĂȘtre abordĂ©s. Les professeurs ont dâabord explorĂ© la mĂ©thode Just-in-time Teaching (« enseignement juste-Ă -temps »). Celle-ci leur a permis de cibler les discussions et les exercices portant sur des aspects difficiles de la matiĂšre Ă©tudiĂ©e et pouvant ĂȘtre faits en classe, grĂące Ă une prĂ©paration prĂ©alable des Ă©tudiants et grĂące Ă un ajustement des contenus effectuĂ© « juste Ă temps » pour le cours. Cependant, les Ă©tudiants nâarrivaient pas toujours bien prĂ©parĂ©s et ne rĂ©alisaient pas tous les lectures assignĂ©es. Les auteurs de cet article prĂ©sentent comment, en voulant ajuster la mĂ©thode « juste-Ă -temps », ils en sont venus Ă inverser leur pĂ©dagogie par inadvertance. Ce faisant, ils expliquent quâils ont aussi rĂ©alisĂ©, Ă leur plus grande surprise, que lâexposĂ© magistral pouvait ĂȘtre trĂšs efficace dans certaines conditions
The Adoption of Socio-Technological Environments to Drive Classroom Change
Comprend des références bibliographique
S4HARA: System for HIV/AIDS resource allocation
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Technology supported collaborative learning.
"This research is supported by le ministĂšre de l'Ăducation, du Loisir et du Sport dans le cadre du Programme d'aide Ă la recherche sur l'enseignement et l'apprentissage (PAREA)"Titre de la couv.: Technology supported collaborative learning.Titre de l'Ă©cran-titre (visionnĂ© le 10 sept. 2009).Ăgalement disponible en format papier.Bibliogr
Peut-on apprendre sans désapprendre?
Lâun des principaux objectifs de lâenseignement des sciences est dâaider les Ă©tudiants Ă modifier leur vision du monde. Cela est particuliĂšrement important en physique, car les Ă©tudiants ont souvent des idĂ©es prĂ©conçues qui vont Ă lâencontre de ce quâon tente de leur enseigner, prĂ©cisĂ©ment en ce qui concerne les concepts newtoniens. Parmi ces «â conceptions erronĂ©es â» documentĂ©es depuis des dĂ©cennies, on estime quâun grand nombre sont profondĂ©ment ancrĂ©es dans leur esprit et difficiles Ă modifier. Les auteurs de cet article prĂ©sentent quelques rĂ©sultats issus dâune recherche quâils ont menĂ©e, dĂ©couvertes qui ont transformĂ© leur propre perception de la façon dont les Ă©tudiants apprennent la physique. Plusieurs des idĂ©es soumises ici pourraient aussi sâappliquer Ă dâautres disciplines, que ce soit dans un programme prĂ©universitaire ou technique
Les retombées de DALITE (Distributed Active Learning Interactive Technology Environment) : un outil en ligne d'apprentissage par les pairs en physique au collégial
Affiche prĂ©sentĂ©e dans le cadre du Colloque de l'ARC, «La recherche collĂ©giale et son milieu : enracinement, dĂ©ploiement et interdĂ©pendance», dans le cadre du 83e CongrĂšs de lâAcfas, UniversitĂ© du QuĂ©bec Ă Rimouski (UQAR), Rimouski, le 27 mai 2015.DALITE, une plateforme collaborative et interactive pour l'apprentissage actif, rĂ©sulte d'une recherche de trois ans subventionnĂ©e par PAREA. Il s'agit d'un outil en ligne conçu pour l'apprentissage par les pairs (AP) en mode asynchrone. Avec DALITE, les Ă©lĂšves justifient par Ă©crit leurs solutions Ă divers problĂšmes, puis analysent leurs justifications en les comparant Ă celles de leurs pairs, consignĂ©es dans une base de donnĂ©es (BD). L'outil permet Ă©galement de suivre la progression de la comprĂ©hension des Ă©lĂšves, car il enregistre toutes leurs rĂ©ponses et justifications. Pour connaĂźtre l'effet de DALITE sur l'Ă©tude de concepts dans un premier cours collĂ©gial de physique (cours de mĂ©canique), nous avons recueilli plus de 7 000 rĂ©ponses et justifications inscrites par les Ă©lĂšves dans une BD contenant plus de 60 problĂšmes et menĂ© des entrevues auprĂšs des Ă©lĂšves, des monitrices et des moniteurs. Nos rĂ©sultats rĂ©vĂšlent que DALITE soutient l'apprentissage de concepts aussi bien que l'AP. Il peut remplacer l'AP en classe, libĂ©rant ainsi du temps pour l'apprentissage actif. Fait important, les Ă©lĂšves ont soulignĂ© l'effet positif de l'Ă©criture, notamment pour acquĂ©rir le vocabulaire et approfondir leur logique et leur rĂ©flexion. De plus, l'interface fournit un outil prĂ©cieux dans la planification des cours, car elle permet de repĂ©rer les conceptions erronĂ©es des Ă©lĂšves. L'affiche prĂ©sentera les grandes lignes de DALITE et les principaux rĂ©sultats au sujet de ses retombĂ©es
- âŠ