93 research outputs found

    Origin of the anomalous Hall Effect in overdoped n-type cuprates: current vertex corrections due to antiferromagnetic fluctuations

    Full text link
    The anomalous magneto-transport properties in electron doped (n-type) cuprates were investigated using Hall measurements at THz frequencies. The complex Hall angle was measured in overdoped Pr2x_{\rm 2-x}Cex_{\rm x}CuO4_{\rm 4} samples (x=0.17 and 0.18) as a continuous function of temperature above TcT_c at excitation energies 5.24 and 10.5 meV. The results, extrapolated to low temperatures, show that inelastic scattering introduces electron-like contributions to the Hall response. First principle calculations of the Hall angle that include current vertex corrections (CVC) induced by electron interactions mediated by magnetic fluctuations in the Hall conductivity reproduce the temperature, frequency, and doping dependence of the experimental data. These results show that CVC effects are the source of the anomalous Hall transport properties in overdoped n-\text{-}type cuprates.Comment: 5 pages, 3 figure

    Scaling and commensurate-incommensurate crossover for the d=2, z=2 quantum critical point of itinerant antiferromagnets

    Full text link
    Quantum critical points exist at zero temperature, yet, experimentally their influence seems to extend over a large part of the phase diagram of systems such as heavy-fermion compounds and high-temperature superconductors. Theoretically, however, it is generally not known over what range of parameters the physics is governed by the quantum critical point. We answer this question for the spin-density wave to fermi-liquid quantum critical point in the two-dimensional Hubbard model. This problem is in the d=2,z=2d=2,z=2 universality class. We use the Two-Particle Self-Consistent approach, which is accurate from weak to intermediate coupling, and whose critical behavior is the same as for the self-consistent-renormalized approach of Moriya. Despite the presence of logarithmic corrections, numerical results demonstrate that quantum critical scaling for the static magnetic susceptibility can extend up to very high temperatures but that the commensurate to incommensurate crossover leads to deviations to scaling.Comment: Unchanged numerical results. It is now shown analytically that the approach includes logarithmic corrections and that the critical behavior is equivalent to the theory of Moriya. 6 pages, 3 figures, Late

    Building data warehouses in the era of big data: an approach for scalable and flexible big data warehouses

    Get PDF
    During the last few years, the concept of Big Data Warehousing gained significant attention from the scientific community, highlighting the need to make design changes to the traditional Data Warehouse (DW) due to its limitations, in order to achieve new characteristics relevant in Big Data contexts (e.g., scalability on commodity hardware, real-time performance, and flexible storage). The state-of-the-art in Big Data Warehousing reflects the young age of the concept, as well as ambiguity and the lack of common approaches to build Big Data Warehouses (BDWs). Consequently, an approach to design and implement these complex systems is of major relevance to business analytics researchers and practitioners. In this tutorial, the design and implementation of BDWs is targeted, in order to present a general approach that researchers and practitioners can follow in their Big Data Warehousing projects, exploring several demonstration cases focusing on system design and data modelling examples in areas like smart cities, retail, finance, manufacturing, among others

    Natural Feature Tracking Augmented Reality for On-Site Assembly Assistance Systems

    Get PDF
    We introduce a natural feature tracking approach that facilitates the tracking of rigid objects for an on-site assembly assistance system. The tracking system must track multiple circuit boards without added fiducial markers, and they are manipulated by the user. We use a common SIFT feature matching detector enhanced with a probability search. This search estimates how likely a set of query descriptors belongs to a particular object. The method was realized and tested. The results show that the probability search enhanced the identification of different circuit boards

    Efficient and Robust NK-Cell Transduction With Baboon Envelope Pseudotyped Lentivector

    Get PDF
    NK-cell resistance to transduction is a major technical hurdle for developing NK-cell immunotherapy. By using Baboon envelope pseudotyped lentiviral vectors (BaEV-LVs) encoding eGFP, we obtained a transduction rate of 23.0 ± 6.6% (mean ± SD) in freshly-isolated human NK-cells (FI-NK) and 83.4 ± 10.1% (mean ± SD) in NK-cells obtained from the NK-cell Activation and Expansion System (NKAES), with a sustained transgene expression for at least 21 days. BaEV-LVs outperformed Vesicular Stomatitis Virus type-G (VSV-G)-, RD114- and Measles Virus (MV)- pseudotyped LVs (p < 0.0001). mRNA expression of both BaEV receptors, ASCT1 and ASCT2, was detected in FI-NK and NKAES, with higher expression in NKAES. Transduction with BaEV-LVs encoding for CAR-CD22 resulted in robust CAR-expression on 38.3 ± 23.8% (mean ± SD) of NKAES cells, leading to specific killing of NK-resistant pre-B-ALL-RS4;11 cell line. Using a larger vector encoding a dual CD19/CD22-CAR, we were able to transduce and re-expand dual-CAR-expressing NKAES, even with lower viral titer. These dual-CAR-NK efficiently killed both CD19KO- and CD22KO-RS4;11 cells. Our results suggest that BaEV-LVs may efficiently enable NK-cell biological studies and translation of NK-cell-based immunotherapy to the clinic

    The Accumulation of Organic Carbon in Mineral Soils by Afforestation of Abandoned Farmland

    Get PDF
    The afforestation of abandoned farmland significantly influences soil organic carbon (OC). However, the dynamics between OC inputs after afforestation and the original OC are not well understood. To learn more about soil OC dynamics after afforestation of farmland, we measured the soil OC content in paired forest and farmland plots in Shaanxi Province, China. The forest plots had been established on farmland 18, 24, 48, 100, and 200 yr previously. The natural 13C abundance of soil organic matter was also analyzed to distinguish between crop- and forest-derived C in the afforested soils. We observed a nonlinear accumulation of total OC in the 0–80 cm depth of the mineral soil across time. Total soil OC accumulated more rapidly under forest stands aged 18 to 48 yr than under forest stands aged 100 or 200 yrs. The rate of OC accumulation was also greater in the 0–10 cm depth than in the 10–80 cm depth. Forest-derived OC in afforested soils also accumulated nonlinearly across time, with the greatest increase in the 0–20 cm depth. Forest-derived OC in afforest soils accounted for 52–86% of the total OC in the 0–10 cm depth, 36–61% of the total OC in the 10–20 cm depth, and 11–50% of the total OC in the 20–80 cm depth. Crop-derived OC concentrations in the 0–20 cm depth decreased slightly after afforestation, but there was no change in crop-derived OC concentrations in the 20–80 cm depth. The results of our study support the claim that afforestation of farmland can sequester atmospheric CO2 by increasing soil OC stocks. Changes in the OC stocks of mineral soils after afforestation appear to be influenced mainly by the input of forest-derived C rather than by the loss of original OC

    Genomic Convergence among ERRα, PROX1, and BMAL1 in the Control of Metabolic Clock Outputs

    Get PDF
    Metabolic homeostasis and circadian rhythms are closely intertwined biological processes. Nuclear receptors, as sensors of hormonal and nutrient status, are actively implicated in maintaining this physiological relationship. Although the orphan nuclear receptor estrogen-related receptor α (ERRα, NR3B1) plays a central role in the control of energy metabolism and its expression is known to be cyclic in the liver, its role in temporal control of metabolic networks is unknown. Here we report that ERRα directly regulates all major components of the molecular clock. ERRα-null mice also display deregulated locomotor activity rhythms and circadian period lengths under free-running conditions, as well as altered circulating diurnal bile acid and lipid profiles. In addition, the ERRα-null mice exhibit time-dependent hypoglycemia and hypoinsulinemia, suggesting a role for ERRα in modulating insulin sensitivity and glucose handling during the 24-hour light/dark cycle. We also provide evidence that the newly identified ERRα corepressor PROX1 is implicated in rhythmic control of metabolic outputs. To help uncover the molecular basis of these phenotypes, we performed genome-wide location analyses of binding events by ERRα, PROX1, and BMAL1, an integral component of the molecular clock. These studies revealed the existence of transcriptional regulatory loops among ERRα, PROX1, and BMAL1, as well as extensive overlaps in their target genes, implicating these three factors in the control of clock and metabolic gene networks in the liver. Genomic convergence of ERRα, PROX1, and BMAL1 transcriptional activity thus identified a novel node in the molecular circuitry controlling the daily timing of metabolic processes

    Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level

    Get PDF
    Changes in the structure of plant communities may have much more impact on ecosystem carbon (C) cycling than any phenotypic responses to environmental changes. We studied these impacts via the response of plant litter quality, at the level of species and community, to persistent water-level (WL) drawdown in peatlands. We studied three sites with different nutrient regimes, and water-level manipulations at two time scales. The parameters used to characterize litter quality included extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), Klason lignin, CuO oxidation phenolic products, and concentrations of C and several nutrients. The litters formed four chemically distinct groups: non-graminoid foliar litters, graminoids, mosses and woody litters. Direct effects of WL drawdown on litter quality at the species level were overruled by indirect effects via changes in litter type composition. The pristine conditions were characterized by Sphagnum moss and graminoid litters. Short-term (years) responses of the litter inputs to WL drawdown were small. In longterm (decades), total litter inputs increased, due to increased tree litter inputs. Simultaneously, the litter type composition and its chemical quality at the community level greatly changed. The changes that we documented will strongly affect soil properties and C cycle of peatlands.Peer reviewe
    corecore