148 research outputs found

    Natural emergence of antigen-reactive T cells in lepromatous leprosy patients during Erythema nodosum leprosum.

    Get PDF
    Fifteen lepromatous leprosy (LL) patients undergoing erythema nodosum leprosum (ENL) reactions were compared with 13 stable, uncomplicated, anergic individuals of the same leprosy background. ENL patients showed significant antigen-induced leukocyte migration inhibition (migration index = 0.058 ± 0.01), paralleling the values obtained with a responder tuberculoid leprosy population (migration index = 0.04 ± 0.004). Both phytohemagglutinin-induced general T-cell proliferation and, more significantly, antigen-induced lymphoproliferation were enhanced during the acute phase of the reaction. Suppressor cell activity, monitored by a costimulant assay, showed enhanced antigen-stimulated suppression of mitogen responses. Interestingly, the improvement in in vitro T-cell responses was not reflected in dermal reactivity, since 48-h delayed-type hypersensitivity responses after intradermal injection of soluble Mycobacterium leprae antigens continued to be poor. After subsidence of reactional lesions, leukocyte migration inhibition, lymphoproliferation, and suppressor cell activity were reduced to the unresponsive state seen in stable LL patients. Significantly, perturbations of T-cell reactivity are detectable in ENL reactions, indicating the natural but transient emergence of antigen-induced T cells in LL

    Recombinant fusion protein identified by lepromatous sera mimics native Mycobacterium leprae in T-cell responses across the leprosy spectrum

    Get PDF
    Pooled polyvalent sera from lepromatous leprosy patients were used to screen a lambda gt11 recombinant DNA expression library of Mycobacterium leprae in order to identify the relevant antigens recognized by the human immune response. Of the 300,000 phages screened, 4 clones were identified that coded for fusion proteins of the same molecular mass. The fusion protein from clone LSR2 was tested for immunoreactivity in assays using peripheral blood cells and sera from 11 laboratory personnel and 105 patients across the leprosy spectrum. LSR2 protein appears to be predominantly a T-cell antigen. It evokes similar lymphoproliferative responses as the native bacillus both at the individual level and in the leprosy spectrum as a whole. Though only 50% of patient sera with anti-M. leprae antibodies reacted with the fusion protein, the pattern of reactivity in the antibody responses was also similar for the various clinical types. The coding regions of clones LSR1 and LSR2 are identical. They show no homology with sequences stored in data banks and encode a protein of 89 amino acids with a calculated molecular mass of approximately 10 kDa

    Biomarkers for Clinical and Incipient Tuberculosis: Performance in a TB-Endemic Country

    Get PDF
    Simple biomarkers are required to identify TB in both HIV(-)TB(+) and HIV(+)TB(+) patients. Earlier studies have identified the M. tuberculosis Malate Synthase (MS) and MPT51 as immunodominant antigens in TB patients. One goal of these investigations was to evaluate the sensitivity and specificity of anti-MS and -MPT51 antibodies as biomarkers for TB in HIV(-)TB(+) and HIV(+)TB(+) patients from a TB-endemic setting. Earlier studies also demonstrated the presence of these biomarkers during incipient subclinical TB. If these biomarkers correlate with incipient TB, their prevalence should be higher in asymptomatic HIV(+) subjects who are at a high-risk for TB. The second goal was to compare the prevalence of these biomarkers in asymptomatic, CD4(+) T cell-matched HIV(+)TB(-) subjects from India who are at high-risk for TB with similar subjects from US who are at low-risk for TB.Anti-MS and -MPT51 antibodies were assessed in sera from 480 subjects including PPD(+) or PPD(-) healthy subjects, healthy community members, and HIV(-)TB(+) and HIV(+)TB(+) patients from India. Results demonstrate high sensitivity (approximately 80%) of detection of smear-positive HIV(-)TB(+) and HIV(+)TB(+) patients, and high specificity (>97%) with PPD(+) subjects and endemic controls. While approximately 45% of the asymptomatic HIV(+)TB(-) patients at high-risk for TB tested biomarker-positive, >97% of the HIV(+)TB(-) subjects at low risk for TB tested negative. Although the current studies are hampered by lack of knowledge of the outcome, these results provide strong support for the potential of these biomarkers to detect incipient, subclinical TB in HIV(+) subjects.These biomarkers provide high sensitivity and specificity for TB diagnosis in a TB endemic setting. Their performance is not compromised by concurrent HIV infection, site of TB and absence of pulmonary manifestations in HIV(+)TB(+) patients. Results also demonstrate the potential of these biomarkers for identifying incipient subclinical TB in HIV(+)TB(-) subjects at high-risk for TB

    Cellulose acetate phthalate, a common pharmaceutical excipient, inactivates HIV-1 and blocks the coreceptor binding site on the virus envelope glycoprotein gp120

    Get PDF
    BACKGROUND: Cellulose acetate phthalate (CAP), a pharmaceutical excipient used for enteric film coating of capsules and tablets, was shown to inhibit infection by the human immunodeficiency virus type 1 (HIV-1) and several herpesviruses. CAP formulations inactivated HIV-1, herpesvirus types 1 (HSV-1) and 2 (HSV-2) and the major nonviral sexually transmitted disease (STD) pathogens and were effective in animal models for vaginal infection by HSV-2 and simian immunodeficiency virus. METHODS: Enzyme-linked immunoassays and flow cytometry were used to demonstrate CAP binding to HIV-1 and to define the binding site on the virus envelope. RESULTS: 1) CAP binds to HIV-1 virus particles and to the envelope glycoprotein gp120; 2) this leads to blockade of the gp120 V3 loop and other gp120 sites resulting in diminished reactivity with HIV-1 coreceptors CXCR4 and CCR5; 3) CAP binding to HIV-1 virions impairs their infectivity; 4) these findings apply to both HIV-1 IIIB, an X4 virus, and HIV-1 BaL, an R5 virus. CONCLUSIONS: These results provide support for consideration of CAP as a topical microbicide of choice for prevention of STDs, including HIV-1 infection

    Punica granatum (Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide

    Get PDF
    BACKGROUND: For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. METHODS: Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1) infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2) binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s) to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. RESULTS: HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. CONCLUSION: These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored

    The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection

    Get PDF
    Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen intermediates (ROI). A recent structure of the C-terminal DNA-binding domain of Lsr2 provides a rationale for its interaction with the minor groove of DNA, its preference for AT-rich tracts, and its similarity to other bacterial nucleoid-associated DNA-binding domains. In contrast, the details of Lsr2 dimerization (and oligomerization) via its N-terminal domain, and the mechanism of Lsr2-mediated chromosomal cross-linking and protection is unknown. We have solved the structure of the N-terminal domain of Lsr2 (N-Lsr2) at 1.73 Å resolution using crystallographic ab initio approaches. The structure shows an intimate dimer of two ß–ß–a motifs with no close homologues in the structural databases. The organization of individual N-Lsr2 dimers in the crystal also reveals a mechanism for oligomerization. Proteolytic removal of three N-terminal residues from Lsr2 results in the formation of an anti-parallel β-sheet between neighboring molecules and the formation of linear chains of N-Lsr2. Oligomerization can be artificially induced using low concentrations of trypsin and the arrangement of N-Lsr2 into long chains is observed in both monoclinic and hexagonal crystallographic space groups. In solution, oligomerization of N-Lsr2 is also observed following treatment with trypsin. A change in chromosomal topology after the addition of trypsin to full-length Lsr2-DNA complexes and protection of DNA towards DNAse digestion can be observed using electron microscopy and electrophoresis. These results suggest a mechanism for oligomerization of Lsr2 via protease-activation leading to chromosome compaction and protection, and concomitant down-regulation of large numbers of genes. This mechanism is likely to be relevant under conditions of stress where cellular proteases are known to be upregulated

    T-cell regulation in Erythema Nodosum Leprosum.

    Get PDF
    Leprosy is a disease caused by Mycobacterium leprae where the clinical spectrum correlates with the patient immune response. Erythema Nodosum Leprosum (ENL) is an immune-mediated inflammatory complication, which causes significant morbidity in affected leprosy patients. The underlying cause of ENL is not conclusively known. However, immune-complexes and cell-mediated immunity have been suggested in the pathogenesis of ENL. The aim of this study was to investigate the regulatory T-cells in patients with ENL. Forty-six untreated patients with ENL and 31 non-reactional lepromatous leprosy (LL) patient controls visiting ALERT Hospital, Ethiopia were enrolled to the study. Blood samples were obtained before, during and after prednisolone treatment of ENL cases. Peripheral blood mononuclear cells (PBMCs) were isolated and used for immunophenotyping of regulatory T-cells by flow cytometry. Five markers: CD3, CD4 or CD8, CD25, CD27 and FoxP3 were used to define CD4+ and CD8+ regulatory T-cells. Clinical and histopathological data were obtained as supplementary information. All patients had been followed for 28 weeks. Patients with ENL reactions had a lower percentage of CD4+ regulatory T-cells (1.7%) than LL patient controls (3.8%) at diagnosis of ENL before treatment. After treatment, the percentage of CD4+regulatory T-cells was not significantly different between the two groups. The percentage of CD8+ regulatory T-cells was not significantly different in ENL and LL controls before and after treatment. Furthermore, patients with ENL had higher percentage of CD4+ T-ells and CD4+/CD8+ T-cells ratio than LL patient controls before treatment. The expression of CD25 on CD4+ and CD8+ T-cells was not significantly different in ENL and LL controls suggesting that CD25 expression is not associated with ENL reactions while FoxP3 expression on CD4+ T-cells was significantly lower in patients with ENL than in LL controls. We also found that prednisolone treatment of patients with ENL reactions suppresses CD4+ T-cell but not CD8+ T-cell frequencies. Hence, ENL is associated with lower levels of T regulatory cells and higher CD4+/CD8+ T-cell ratio. We suggest that this loss of regulation is one of the causes of ENL

    Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants

    Get PDF
    BACKGROUND: Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncompeting mAbs may have these properties. METHODS AND FINDINGS: Human mAb CR3014 has been shown to completely prevent lung pathology and abolish pharyngeal shedding of SARS-CoV in infected ferrets. We generated in vitro SARS-CoV variants escaping neutralization by CR3014, which all had a single P462L mutation in the glycoprotein spike (S) of the escape virus. In vitro experiments confirmed that binding of CR3014 to a recombinant S fragment (amino acid residues 318–510) harboring this mutation was abolished. We therefore screened an antibody-phage library derived from blood of a convalescent SARS patient for antibodies complementary to CR3014. A novel mAb, CR3022, was identified that neutralized CR3014 escape viruses, did not compete with CR3014 for binding to recombinant S1 fragments, and bound to S1 fragments derived from the civet cat SARS-CoV-like strain SZ3. No escape variants could be generated with CR3022. The mixture of both mAbs showed neutralization of SARS-CoV in a synergistic fashion by recognizing different epitopes on the receptor-binding domain. Dose reduction indices of 4.5 and 20.5 were observed for CR3014 and CR3022, respectively, at 100% neutralization. Because enhancement of SARS-CoV infection by subneutralizing antibody concentrations is of concern, we show here that anti-SARS-CoV antibodies do not convert the abortive infection of primary human macrophages by SARS-CoV into a productive one. CONCLUSIONS: The combination of two noncompeting human mAbs CR3014 and CR3022 potentially controls immune escape and extends the breadth of protection. At the same time, synergy between CR3014 and CR3022 may allow for a lower total antibody dose to be administered for passive immune prophylaxis of SARS-CoV infection

    Lsr2 of Mycobacterium tuberculosis is a DNA-bridging protein

    Get PDF
    Lsr2 is a small, basic protein present in Mycobacterium and related actinomycetes. Recent studies suggest that Lsr2 is a regulatory protein involved in multiple cellular processes including cell wall biosynthesis and antibiotic resistance. However, the underlying molecular mechanisms remain unknown. In this article, we performed biochemical studies of Lsr2–DNA interactions and structure–function analysis of Lsr2. Analysis by atomic force microscopy revealed that Lsr2 has the ability to bridge distant DNA segments, suggesting that Lsr2 plays a role in the overall organization and compactness of the nucleoid. Mutational analysis identified critical residues and selection of dominant negative mutants demonstrated that both DNA binding and protein oligomerization are essential for the normal functions of Lsr2 in vivo. These results provide strong evidence that Lsr2 is a DNA bridging protein, which represents the first identification of such proteins in bacteria phylogenetically distant from the Enterobacteriaceae. DNA bridging by Lsr2 also provides a mechanism of transcriptional regulation by Lsr2
    corecore