56 research outputs found

    High-resolution simulations of clump-clump collisions using SPH with Particle Splitting

    Get PDF
    We investigate, by means of numerical simulations, the phenomenology of star formation triggered by low-velocity collisions between low-mass molecular clumps. The simulations are performed using an SPH code which satisfies the Jeans condition by invoking On-the-Fly Particle Splitting. Clumps are modelled as stable truncated (non-singular) isothermal, i.e. Bonnor-Ebert, spheres. Collisions are characterised by M_0 (clump mass), b (offset parameter, i.e. ratio of impact parameter to clump radius), and M (Mach Number, i.e. ratio of collision velocity to effective post-shock sound speed). The gas subscribes to a barotropic equation of state, which is intended to capture (i) the scaling of pre-collision internal velocity dispersion with clump mass, (ii) post-shock radiative cooling, and (iii) adiabatic heating in optically thick protostellar fragments. The efficiency of star formation is found to vary between 10% and 30% in the different collisions studied and it appears to increase with decreasing M_0, and/or decreasing b, and/or increasing M. For b<0.5 collisions produce shock compressed layers which fragment into filaments. Protostellar objects then condense out of the filaments and accrete from them. The resulting accretion rates are high, 1 to 5 x 10^{-5} M_sun yr^{-1}, for the first 1 to 3 x 10^4 yrs. The densities in the filaments, n >~ 5 x 10^5 cm^{-3}, are sufficient that they could be mapped in NH_3 or CS line radiation, in nearby star formation regions.Comment: Accepted for publication in MNRAS; 21 pages; 25 figures. Four figures are provided separately in reduced jpg format due to their large original ps size: click on "PostScript" to have direct access to the 4 jpg figures; full size ps files for these 4 figures can be found at http://www.aip.de/People/skitsionas/papers

    SPH simulations of star/planet formation triggered by cloud-cloud collisions

    Get PDF
    We present results of hydrodynamic simulations of star formation triggered by cloud-cloud collisions. During the early stages of star formation, low-mass objects form by gravitational instabilities in protostellar discs. A number of these low-mass objects are in the sub-stellar mass range, including a few objects of planetary mass. The disc instabilities that lead to the formation of low-mass objects in our simulations are the product of disc-disc interactions and/or interactions between the discs and their surrounding gas.Comment: 8 pages, 7 figures; accepted for publication in the proceedings of IAU Symposium 249: Exoplanets: Detection, Formation and Dynamics, Y.-S. Sun, S. Ferraz-Mello & J.-L. Zhou (eds.), Cambridge University Pres

    The Serendipitous XMM-Newton Cluster Athens Survey (SEXCLAS): Sample selection and the cluster log N - log S

    Get PDF
    In this paper we serendipitously identify X-ray cluster candidates using XMM-Newton archival observations complemented by 5-band optical photometric follow-up observations (r~23 mag) as part of the X-ray Identification (XID) programme. Our sample covers an area of ~2.1 sq. deg (15 XMM-Newton fields) and comprises a total of 21 (19 serendipitous + 2 target) extended X-ray sources to the limit f(0.5-2keV) ~ 6x10^{-15} cgs with a high probability (> 99.9%) of being extended on the XMM-Newton images. Of the 21 cluster candidates 7 are spectroscopically confirmed in the literature. Exploiting the optical data available for these fields we discover that 68% of the X-ray cluster candidates are associated with optical galaxy overdensities. We also attempt to constrain the redshifts of our cluster candidates using photometric methods. We thus construct the photometric redshift distribution of galaxies in the vicinity of each X-ray selected cluster candidate and search for statistically significant redshift peaks against that of the background distribution of field galaxies. Comparison of the photometric with spectroscopic redshift estimates for the confirmed clusters suggest that our simple method is robust out to z~0.5. For clusters at higher z, deeper optical data are required to estimate reliable photometric redshifts. Finally, using the sample of the 19 serendipitous X-ray selected cluster candidates we estimate their surface density down to f(0.5-2keV) ~ 6x10^{-15} cgs and find it to be in fair agreement with previous and recent studies.Comment: Submitted to the MNRAS, 8 page

    XMM and Chandra measurements of the AGN intrinsic absorption: dependence on luminosity and redshift

    Full text link
    We combine bright XMM data with the Chandra Deep Field South observations in order to explore the behavior of the intrinsic AGN absorption, as a function of redshift and luminosity.Our sample consists of 359 sources selected in the hard 2-8 keV band, spanning the flux range 6\times10^{-16}-$3\times10^{-13} erg s^-1 cm^-2 with a high rate of spectroscopic or photometric redshift completeness (100 and 85 per cent respectively for the Chandra and XMM data. We derive the column density values using X-ray spectral fits. We find that the fraction of obscured AGN falls with increasing luminosity in agreement with previous findings. The fraction of obscured AGN shows an apparent increase at high redshifts (z>2). Simulations show that this effect can be most probably attributed to the fact that at high redshifts the column densities are overestimated.Comment: 14 pages, 9 figures, A&A accepte

    The dependence of the IMF on the density-temperature relation of pre-stellar gas

    Get PDF
    It has been recently shown by several authors that fragmentation of pre-stellar gas (i.e. at densities from 104 to 1010 particles cm−3 and temperatures of order 10-30 K) depends on the gas thermodynamics much more than it was anticipated in earlier studies, in which only an isothermal behaviour has been assumed for the gas. Here we review the results of a number of numerical hydrodynamic simulations (e.g. Li et al. 2003, Jappsen et al. 2005, Bonnell et al. 2006) in which departure from isothermality has been attempted by employing a polytropic equation of state (eos) with exponent different from unity. In particular, in these studies it has been shown that the dominant fragmentation scale of pre-stellar gas, and hence the peak of the initial mass function (IMF), depends on a polytropic exponent that changes value, from below to above unity, at a critical density (Larson 2005). Furthermore, this piecewise polytropic eos depends on the gas metallicity and fundamental constants. Therefore, the peak of the IMF depends, in turn, also on the gas metallicity and fundamental constants rather than on initial conditions, as it has been previously suggested (e.g. Larson 1995). Hence, we are for the first time in a position to infer theoretically the notion of a universal IMF (at least for its low-mass end). We also present two test cases in which a non-isothermal eos has been used in the context of smoothed particle hydrodynamic (SPH) numerical simulations. In the first case star formation is triggered by means of low-mass clump collisions. These calculations have shown that clump collisions can be a relatively efficient mechanism for the formation of solar-mass protostars and their lower-mass companions (efficiency greater or of order 20-25%; Kitsionas & Whitworth 2006). We have also found that in such collisions protostars form mainly by fragmentation of dense filaments along which it is likely that pairs of protostars capture each other in close binaries surrounded by circumbinary discs. In the second case, the use of a polytropic eos with a varying exponent appropriate for the metallicity of starburst regions (Spaans & Silk 2000, 2005) is shown to be sufficient to obtain a top heavy IMF similar to that observed e.g. in the Galactic centre (Klessen, Spaans & Jappsen 2006). These are preliminary results in the direction of revisiting earlier isothermal calculations that were resolving all densities up to the opacity limit for fragmentation (e.g. Bate et al. 2002ab, 2003), this time also taking into account the thermal properties of the gas in the density range between 104 and 1010 particles cm−3. The next step would be to include self-consistent radiation transport in the calculations, the first attempts for which are already in the making (e.g. Whitehouse & Bate 2004)

    HS 2237+8154 : on the onset of mass transfer or entering the period gap?

    Get PDF
    We report follow-up observations of a new white dwarf/red dwarf binary HS 2237+8154, identified as a blue variable star from the Hamburg Quasar Survey. Ellipsoidal modulation observed in the R band as well as the radial velocity variations measured from time-resolved spectroscopy determine the orbital period to be Porb = 178.10 +- 0.08 min. The optical spectrum of HS 2237+8154 is well described by a combination of a Teff = 11500 +- 1500 K white dwarf (assuming log g = 8) and a dM 3.5 +- 0.5 secondary star. The distance implied from the flux scaling factors of both stellar components is d = 105 +- 25 pc. Combining the constraints obtained from the radial velocity of the secondary and from the ellipsoidal modulation, we derive a binary inclination of i = 50-70 and stellar masses of and Mwd = 0.47-0.67 M and Msec = 0.2-0.4 M. All observations imply that the secondary star must be nearly Roche-lobe filling. Consequently, HS 2237+8154 may be either a pre-cataclysmic variable close to the start of mass transfer, or - considering its orbital period - a cataclysmic variable that terminated mass transfer and entered the period gap, or a hibernating nova

    On the use of photometric redshifts for X-ray selected AGNs

    Full text link
    (Abridged) In this paper we present photometric redshift estimates for a sample of X-ray selected sources detected in the wide field (~2 deg^2), bright [f_{X} (0.5-8 keV)~10^{-14} cgs] XMM-Newton/2dF survey. Unlike deeper X-ray samples comprising a large fraction of sources with colours dominated by the host galaxy, our bright survey primarily probes the QSO X-ray population. Therefore photometric redshift methods employing both galaxy and QSO templates need to be used. We employ the photometric redshift technique of Hatziminaoglou, Mathez & Pello (2000) using 5-band photometry from the SDSS. We separate our X-ray sources according to their optical profile to point-like and extended. We apply QSO and galaxy templates to the point-like and extended sources respectively. X-ray sources associated with Galactic stars are identified and discarded from our point-like sample on the basis of their low X-ray--to--optical flux ratio and their broad band colours that are best fit by stellar templates. Comparison of our results with spectroscopic redshifts available, allows calibration of our method and estimation of the photometric redshift accuracy. For ~70 per cent of the point-like sources photometric redshifts are correct within dz <= 0.3 (or ~75 per cent have dz/(1+z) <= 0.2), and the rms scatter is estimated to be sigma_z = 0.30. For the optically extended objects the photometric redshifts work only in the case of red (g - r > 0.5 mag) sources yielding dz <= 0.15 and dz/(1+z) <= 0.2 for 73 and 93 per cent respectively. However, we find that the above photometric redshift technique does not work in the case of extended sources with blue colours (g - r < 0.5): such sources cannot be fit successfully by QSO or galaxy templates, or any linear combination of the two.Comment: Replaced due to extended revision; 11 pages, 4 figures; Accepted in A&

    Radiative transfer and the energy equation in SPH simulations of star formation

    Get PDF
    We introduce and test a new and highly efficient method for treating the thermal and radiative effects influencing the energy equation in SPH simulations of star formation. The method uses the density, temperature and gravitational potential of each particle to estimate a mean optical depth, which then regulates the particle's heating and cooling. The method captures -- at minimal computational cost -- the effects of (i) the rotational and vibrational degrees of freedom of H2, H2 dissociation, H0 ionisation, (ii) opacity changes due to ice mantle melting, sublimation of dust, molecular lines, H-, bound-free and free-free processes and electron scattering; (iv) external irradiation; and (v) thermal inertia. The new algorithm reproduces the results of previous authors and/or known analytic solutions. The computational cost is comparable to a standard SPH simulation with a simple barotropic equation of state. The method is easy to implement, can be applied to both particle- and grid-based codes, and handles optical depths 0<tau<10^{11}.Comment: Submitted to A&A, recommended for publicatio

    Detection of the white dwarf and the secondary star in the new SU UMa dwarf nova HS 2219+1824

    Get PDF
    We report the discovery of a new, non-eclipsing SU UMa-type dwarf nova, HS 2219+1824. Photometry obtained in quiescence (V ≈ 17.5) reveals a double-humped light curve from which we derive an orbital period of 86.2 min. Additional photometry obtained during a superoutburst reaching V 12.0 clearly shows superhumps with a period of 89.05 min. The optical spectrum contains double-peaked Balmer and He I emission lines from the accretion disc as well as broad absorption troughs of HÎČ, HÎł, and HÎŽ from the white dwarf primary star. Modelling of the optical spectrum implies a white dwarf temperature of 13 000 K < ∌ T eïŹ€ < ∌ 17 000 K, a distance of 180 pc < ∌ d < ∌ 230 pc, and suggests that the spectral type of the donor star is later than M 5. Phase-resolved spectroscopy obtained during quiescence reveals a narrow Hα emission line component which has a radial velocity amplitude and phase consistent with an origin on the secondary star, possibly on the irradiated hemisphere facing the white dwarf. This constitutes the first detection of line emission from the secondary star in a quiescent SU UMa star
    • 

    corecore