167 research outputs found

    Proton structure corrections to electronic and muonic hydrogen hyperfine splitting

    Full text link
    We present a precise determination of the polarizability and other proton structure dependent contributions to the hydrogen hyperfine splitting, based heavily on the most recent published data on proton spin dependent structure functions from the EG1 experiment at the Jefferson Laboratory. As a result, the total calculated hyperfine splitting now has a standard deviation slightly under 1 part-per-million, and is about 1 standard deviation away from the measured value. We also present results for muonic hydrogen hyperfine splitting, taking care to ensure the compatibility of the recoil and polarizability terms.Comment: 9 pages, 1 figur

    Field Theory in Noncommutative Minkowski Superspace

    Full text link
    There is much discussion of scenarios where the space-time coordinates x^\mu are noncommutative. The discussion has been extended to include nontrivial anticommutation relations among spinor coordinates in superspace. A number of authors have studied field theoretical consequences of the deformation of N=1 superspace arising from nonanticommutativity of coordinates \theta, while leaving \bar{theta}'s anticommuting. This is possible in Euclidean superspace only. In this note we present a way to extend the discussion by making both \theta and \bar{theta} coordinates non-anticommuting in Minkowski superspace. We present a consistent algebra for the supercoordinates, find a star-product, and give the Wess-Zumino Lagrangian L_{WZ} within our model. It has two extra terms due to non(anti)commutativity. The Lagrangian in Minkowski superspace is always manifestly Hermitian and for L_{WZ} it preserves Lorentz invariance.Comment: 8 pages, added references, two-column format, published in PR

    Evaluating matrix elements relevant to some Lorenz violating operators

    Get PDF
    Carlson, Carone and Lebed have derived the Feynman rules for a consistent formulation of noncommutative QCD. The results they obtained were used to constrain the noncommutativity parameter in Lorentz violating noncommutative field theories. However, their constraint depended upon an estimate of the matrix element of the quark level operator (gamma.p - m) in a nucleon. In this paper we calculate the matrix element of (gamma.p - m), using a variety of confinement potential models. Our results are within an order of magnitude agreement with the estimate made by Carlson et al. The constraints placed on the noncommutativity parameter were very strong, and are still quite severe even if weakened by an order of magnitude.Comment: 4 pages, 3 figures, RevTex, minor change

    Wide dynamic range magnetic field cycler: Harnessing quantum control at low and high fields

    Get PDF
    We describe the construction of a fast field cycling device capable of sweeping a 4-order-of-magnitude range of magnetic fields, from ~1mT to 7T, in under 700ms. Central to this system is a high-speed sample shuttling mechanism between a superconducting magnet and a magnetic shield, with the capability to access arbitrary fields in between with high resolution. Our instrument serves as a versatile platform to harness the inherent dichotomy of spin dynamics on offer at low and high fields - in particular, the low anisotropy, fast spin manipulation, and rapid entanglement growth at low field as well as the long spin lifetimes, spin specific control, and efficient inductive measurement possible at high fields. Exploiting these complementary capabilities in a single device open up applications in a host of problems in quantum control, sensing, and information storage, besides in nuclear hypepolarization, relaxometry and imaging. In particular, in this paper, we focus on the ability of the device to enable low-field hyperpolarization of 13C nuclei in diamond via optically pumped electronic spins associated with Nitrogen Vacancy (NV) defect centers

    Longitudinal-Transverse Separations of Structure Functions at Low Q2Q^{2} for Hydrogen and Deuterium

    Get PDF
    We report on a study of the longitudinal to transverse cross section ratio, R=σL/σTR=\sigma_L/\sigma_T, at low values of xx and Q2Q^{2}, as determined from inclusive inelastic electron-hydrogen and electron-deuterium scattering data from Jefferson Lab Hall C spanning the four-momentum transfer range 0.06 <Q2<2.8 < Q^{2} < 2.8 GeV2^{2}. Even at the lowest values of Q2Q^{2}, RR remains nearly constant and does not disappear with decreasing Q2Q^{2}, as expected. We find a nearly identical behaviour for hydrogen and deuterium.Comment: 4 pages, 2 gigure

    A Naturally Narrow Positive Parity Theta^+

    Full text link
    We present a consistent color-flavor-spin-orbital wave function for a positive parity Theta^+ that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive parity Theta^+ lighter than its negative parity counterpart. We consider decays of the Theta^+ and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths.Comment: 10 pages, 1 figure, Revtex4, two-column format, version to be published in Phys. Rev. D, includes numerical estimates of decay width

    Prospects for Pentaquark Searches in e+ee^+e^- Annihilations and γγ\gamma\gamma Collisions

    Full text link
    Recent strong experimental evidence of a narrow exotic S = +1 baryon resonance, Θ+\Theta^+, suggests the existence of other exotic baryons. We discuss the prospects of confirming earlier experimental evidence of Θ+\Theta^+ and the observation of additional hypothetical exotic baryons in e+ee^+e^- annihilations and γγ\gamma\gamma collisions at LEP and B Factories

    Aviation effects on already-existing cirrus clouds.

    Get PDF
    Determining the effects of the formation of contrails within natural cirrus clouds has proven to be challenging. Quantifying any such effects is necessary if we are to properly account for the influence of aviation on climate. Here we quantify the effect of aircraft on the optical thickness of already-existing cirrus clouds by matching actual aircraft flight tracks to satellite lidar measurements. We show that there is a systematic, statistically significant increase in normalized cirrus cloud optical thickness inside mid-latitude flight tracks compared with adjacent areas immediately outside the tracks

    Beam-helicity asymmetries for single-hadron production in semi-inclusive deep-inelastic scattering from unpolarized hydrogen and deuterium targets

    Get PDF
    A measurement of beam-helicity asymmetries for single-hadron production in deep-inelastic scattering is presented. Data from the scattering of 27.6 GeV electrons and positrons off gaseous hydrogen and deuterium targets were collected by the HERMES experiment. The asymmetries are presented separately as a function of the Bjorken scaling variable, the hadron transverse momentum, and the fractional energy for charged pions and kaons as well as for protons and anti-protons. These asymmetries are also presented as a function of the three aforementioned kinematic variables simultaneously

    Longitudinal double-spin asymmetries in semi-inclusive deep-inelastic scattering of electrons and positrons by protons and deuterons

    Get PDF
    A comprehensive collection of results on longitudinal double-spin asymmetries is presented for charged pions and kaons produced in semi-inclusive deep-inelastic scattering of electrons and positrons on the proton and deuteron, based on the full HERMES data set. The dependence of the asymmetries on hadron transverse momentum and azimuthal angle extends the sensitivity to the flavor structure of the nucleon beyond the distribution functions accessible in the collinear framework. No strong dependence on those variables is observed. In addition, the hadron charge-difference asymmetry is presented, which under certain model assumptions provides access to the helicity distributions of valence quarks
    corecore