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Aviation effects on already-existing cirrus clouds
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Determining the effects of the formation of contrails within natural cirrus clouds has proven
to be challenging. Quantifying any such effects is necessary if we are to properly account for
the influence of aviation on climate. Here we quantify the effect of aircraft on the optical
thickness of already-existing cirrus clouds by matching actual aircraft flight tracks to satellite
lidar measurements. We show that there is a systematic, statistically significant increase in
normalized cirrus cloud optical thickness inside mid-latitude flight tracks compared with
adjacent areas immediately outside the tracks.
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ir traffic is known to have an immediate and noticeable

effect on clouds in the upper troposphere. New clouds

that form due to aircraft effluent are called contrails"2,
and may develop into more persistent and widespread contrail
cirrus. Boucher? was the first to realize that aviation might have a
strong influence on the occurrence rate of cirrus clouds. Previous
studies of contrail optical properties are either based on passive
remote sensing in which contrails are identified as linear
features in scenes of brightness temperature differences*® or
modelling studies in which contrails are formed when favourable
meteorological conditions are reached”. The life cycle of contrails
and aviation-induced cirrus, their radiative forcing and feedback
on natural clouds have been studied by treating them as an
independent cloud class in a climate model®. The study by
Iwabuchi et al® is the only one so far that has used height-
resolved observations from space-borne lidar measurements to
investigate the physical and optical properties of contrails. In
their approach, the authors used passive MODIS (moderate
resolution imaging spectroradiometer) observations to identify
contrails for a subsequent detailed analysis of CALIOP (cloud-
aerosol lidar with orthogonal polarization) observations.

In general, aviation-induced clouds (that is, contrails and
contrail cirrus) have been found to be optically thin'®!!, and their
climatic effects have been estimated to be minor®12-1° even when
considering their entire life cycle®!®. The effect of contrails
embedded in natural cirrus is a mechanism that currently has
neither been studied nor assessed for its radiative effect on
climate®15-17,

While optically thick cirrus clouds have a net cooling effect on
surface temperature, optically thin cirrus clouds, like greenhouse
gases, can have a warming effect'>!8, Aircraft emissions and
contrails at cirrus altitudes have the potential to either cause
optically thin cirrus clouds to form (that would have a warming
effect on surface temperatures) or increase the optical thickness of
existing clouds (or induce new optically thick clouds), thus,
causing a net cooling effect. Enhanced observations of the effects

of aircraft on cirrus cloud properties are needed to help bound
and quantify these possible effects.

The aim of this study is to test the hypothesis that contrails
formed within natural cirrus clouds have no measurable immediate
effect on cirrus optical depth inside and outside flight tracks in the
upper troposphere. We combine data of aircraft flight tracks with
spaceborne lidar observations to investigate the effect of aviation on
the optical thickness of already-existing cirrus clouds. We detect a
statistically significant 22% increase in normalized cirrus optical
thickness in mid-latitude air traffic flight tracks compared with
adjacent areas outside the flight tracks.

Results

Data sources. We have used commercially available flight track
data from FlightAware.com for aircraft serving the major con-
nections between the west coast of the United States and Hawaii
in the years 2010 and 2011. Actual flight data (measurements
from the aircraft) are received from Air Navigation Service
Providers and Automatic Dependent Surveillance—Broadcast
receivers. In intervals when no data is received from the aircraft
itself, positions are interpolated between the last two reported
positions. We consider commercial airline connections between
Seattle (KSEA), San Francisco (KSFO), Los Angeles (KLAX) and
Honolulu (PHNL).

We derive information about cirrus optical thickness (COT),
cloud base and top height, cloud geometrical depth (vertical
extent) and mean extinction coefficient from observations with
the CALIOP instrument aboard the cloud-aerosol lidar and
infrared pathfinder satellite observations (CALIPSO) satellite!®.
Details on the selection of CALIPSO data used in this study are
given in the Methods section.

Approach. Figure 1 illustrates our approach. Typical flight tracks
for connections between Seattle (KSEA), San Francisco (KSFO),
Los Angeles (KLAX) and Honolulu (PHNL) are shown as thick
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Figure 1| Overview of the analysis approach. (a) Typical aircraft flight tracks (coloured lines) and CALIPSO satellite trajectories (grey lines for 16-day
cycle, black lines for example cases). (b-d) Close-up of three example overpasses indicated in a with values of normalized cirrus optical thickness

(coloured dots) and illustration of the inner and outer track (light and dark grey shading, respectively). White and grey dots in b-d refer to data that have
not been considered in the analysis and do not fulfil the quality assurance criteria, respectively. Times of CALIPSO and aircraft overpasses are given at the

bottom of b-d. Negative and positive time delay values indicate that the aircra
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ft arrived at the scene before and after, respectively, the satellite overpass.
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coloured lines. CALIPSO orbits are indicated as thin grey lines in
the figure. The inset shows normalized COT (nCOT; see below)
at 532 nm across each of the flight corridors between Los Angeles,
San Francisco, Seattle and Honolulu. In cases 1 and 2 aircraft had
passed the area <30 min before the CALIPSO overpass. In case 3,
CALIOP observed the location of the flight track before the
passage of the aircraft. For these cases cirrus clouds were present
at the flight level of the aircraft. For the cases 1 and 2 where the
aircraft arrived before the satellite overpass, CALIOP nCOT was
clearly larger for the inner part of the flight track compared with
clouds present on either side—creating a ‘plane track’ signature
caused by an embedded contrail or another effect on the cloud
caused by the aircraft.

Categories for data analysis. We accumulated data for these
three air traffic corridors during 2010 and 2011 in which the
absolute difference between aircraft and CALIPSO arrival times
was 30min or less. We classified the data into four categories
illustrated in Fig. 2: (I) inside flight track, ahead of aircraft; (II)
outside flight track, ahead of aircraft; (III) inside flight track,
behind aircraft; and (IV) outside flight track, behind aircraft.

If our hypothesis that aircraft have no observable effect on
cirrus cloud properties is true, then there should be no statistically

Aircraft 1]

Figure 2 | Categories for data analysis. Category I: inside the flight track,
ahead of the aircraft. Category IlI: outside the flight track, ahead of the
aircraft. Category llI: inside the flight track, behind the aircraft. Category I1V:
outside the flight track, behind the aircraft.
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significant differences in COT or in nCOT between the four
categories shown in Fig. 2. If the hypothesis is false, and aircraft
emissions do have an impact on cloud properties, clouds in
category III should have different nCOT compared with the other
categories.

Normalization of cirrus cloud optical thickness. As a result of
natural variability in the COT of unperturbed cirrus clouds, our
COT data set is skewed towards large values. The histograms in
Fig. 3 show the distribution of 720 5-km CALIOP data points
with a maximum cloud geometrical depth of 2.5km. The dis-
tribution of absolute COT in Fig. 3a has a skewness of 1.57. We
normalize COT with respect to the maximum CALIOP value for
the overpass. Figure 3b shows the frequency distribution for the
same data after normalization. The mean and median values are
now essentially equal, and the distribution has a skewness value of
0.18. The distributions of COT and nCOT for cases with max-
imum cirrus geometrical depths different from 2.5km have very
similar shape and skewness (not shown). The rightmost column
in Fig. 3b bears further explanation. nCOT values in these data
vary from a minimum of 0.03 to a maximum of 1. The column
limits in Fig. 3b go from 0 to 0.0999 for the first column, 0.1 to
0.1999 for the second and 0.9 to 0.9999 for the next-to-last col-
umn. Since the true COT for each of the overpasses we accu-
mulated will have at least one maximum value, each pass for
nCOT will have at least one value of unity. The rightmost column
shows these unity values, which are too large to be included in the
interval from 0.9 to 0.9999. The rightmost column should not be
interpreted as values larger than one, but rather values of iden-
tically one.

The normalization ensures that the data are more normally
distributed (a requirement for the statistical tests we use), and the
analysis is not biased by a few large values. If our hypothesis that
aircraft have no measurable effect on cirrus cloud optical
properties is true, there should be no statistically significant
differences in mean COT and mean nCOT between these four
categories. Otherwise, the mean values for category III should be
different than for the other categories, which should not exhibit
any differences in mean values.

Effects of advection and other aircraft. We use ERA-Interim
wind speed v and direction in combination with speed and
heading of the aircraft at the location and height of the crossing
between flight track and CALIPSO overpass to account for
the effect of advection. The displacement D perpendicular to the
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Figure 3 | Frequency distribution of cirrus optical thickness. Distribution of absolute COT (a) and nCOT (b) for cases where the maximum cloud layer
depth is 2.5 km. The data come from all four categories. The box-and-whisker plots show the 25 and 75% quartiles as the box, with the median value being the
vertical line inside the box and outliers shown as dots. The diamond inside the box indicates the mean value (vertical vertices) and + 95% confidence interval
(horizontal vertices) for the data. The number of observations is shown on the right vertical axis. Note that the highest bin in b only contains values of 1.0.
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Figure 4 | Effect of advection. The effect of advection presented as
displacement perpendicular to the flight track versus the angular difference
between aircraft heading and wind direction. The colour coding refers to the
absolute time difference between aircraft and CALIPSO.

flight track is derived as D= At v sin Adir, where Adir is the
angular difference between aircraft heading and wind direction
and At is the absolute value of the time delay between aircraft
and CALIPSO overpass (Fig. 4). We then omit cases that are
associated with a displacement larger than 30 km perpendicular
to the flight track. We cannot simply calculate how far the
emissions from the aircraft would be moved in the time interval
between the satellite overpass and the aircraft passage given a
constant wind and ‘move’ our observations there. We only have
observations along the line of the CALIPSO orbit, as illustrated in
panels b-d in Fig. 1 and in Supplementary Fig. 3. Let us choose
the CALIPSO/flight track crossing point as the origin for our
coordinate system. A hypothetical wind vector is shown as a thick
purple arrow in Supplementary Fig. 3. Given this wind vector,
material emitted by the aircraft at the crossing point (1) would be
advected to point (2) in the time interval between the passage of
the aircraft and the time that CALIPSO observes this point. Point
(2) is not on the CALIPSO track. To perform this sort of
advection calculation properly for this system, we would need to
first calculate the wind vector component along the CALIPSO
track to find point (3), then use the wind vector to calculate the
origin of the air that CALIPSO would have observed at this new
point (which is point (4) in the illustration). Given the CALIPSO/
flight track geometry, the lag time between the satellite and air-
craft passing point (1) and the wind vector, this new point of
origin may or may not be on the flight track aft of the aircraft. In
any case, this iterative calculation would be necessary for each
crossing.

In addition, winds in the atmosphere are not constant.
Turbulence (even for a constant wind speed) can redistribute
emissions around the centreline calculated in the manner
described above, and uncertainties in the ERA-Interim winds
also need to be taken into account. To use this approach we
would at a minimum need to perform Gaussian plume dispersion
calculations for a line source, and augment these with estimates of
the effects of uncertainties in the ERA-Interim wind fields. This
plume advection approach is illustrated as a diffuse horizontal
line in Supplementary Fig. 3. The result of these calculations
would be a flight corridor with a new location, centred around a
particular line, but with a probability distribution of location.

Figure 4 shows how far advection would have moved any
emissions from the aircraft perpendicular to the flight track in the
time interval between the passage of the aircraft and the satellite
overpass. In the majority of cases, advection does not move
material outside what we define as the inner flight track, and
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Figure 5 | Cirrus cloud optical thickness per category for a maximum
cirrus geometrical depth of 2.5 km. The magenta box-and-whisker plots
show the quantiles for the data in each category from a one-way analysis of
variance using the JMP software package. Mean diamonds (cyan) indicate
the 95% confidence intervals for the mean values of each of the categories.
If the upper and lower horizontal lines overlap, there is no statistically
significant difference in means. Numbers in the lower part of the figure give
the mean value and number of observations (that is, CALIPSO L2 5-km
points) in each category. The horizontal grey line represents the overall
mean value.

Table 1 | Statistical significance between all categories pairs
with P<0.05, subdivided with respect to maximum cirrus
geometrical depth.

Maximum cirrus geometrical Significant differences between

depth (km) categories

2.0 =1V, HE=11, -1
2.5 =1V, =11, 11 =1
3.0 =1V, =1

4.0 n—1v

5.0 n—1v

6.0 n—1v

The tests were performed for all category pairs.

therefore a more sophisticated calculation is not needed in this
approach.

To account for the effect of other aircraft on the same flight
track we omit cases in which the delay between any previous
aircraft and our flight of interest was <30 min. Supplementary
Fig. 4 illustrates how advection may influence the properties of
the air in the categories we use for analysis. Further details
on the effect of advection on our findings are provided in the
Supplementary Discussion, as well as in Supplementary Tables 1
and 2.

Findings for clouds with different geometrical thickness. The
results of this analysis are shown in Fig. 5. For brevity we present
the results for cases in which the maximum cirrus depth was
2.5km. The mean nCOT for category III (0.59) is significantly
higher than for the other three categories (IIT —II: P<0.0001;
III —IV: P<0.0001; III —I: P=0.0027). In terms of true COT,
the category 3 mean value was 0.30, while the means of the other
categories were as follows: I, 0.27; II, 0.26; IV, 0.26. Thus, the
mean COT for category III was 14% higher than the other
categories, though statistically significant only at the 93%
confidence level due to the skewness of the data. Differences
between the other categories were not statistically significant. We
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Figure 6 | Distribution of cirrus optical thickness per category. Frequency of observation of nCOT (a) and absolute COT (b) for all cases, with maximum
cirrus geometrical depth of 2.5km (that is, the data presented in Fig. 2). Colours refer to the different categories. Category | (magenta): inside the flight
track, ahead of the aircraft. Category Il (green): outside the flight track, ahead of the aircraft. Category Ill (blue): inside the flight track, behind the aircraft.

Category IV (orange): outside the flight track, behind the aircraft.

examined cases for different maximum cloud layer depths
(Supplementary Fig. 1). Table 1 reveals that the difference in
nCOT for clouds inside and outside the flight track aft of the
aircraft persists for all cases of maximum cirrus geometrical
depth. The difference between category III and the other cate-
gories ahead of the aircraft is significant only for geometrically
thin clouds.

Figure 6 gives the frequency of observation of both COT and
nCOT for the case of 2.5km maximum cirrus geometrical depth.
nCOT in category III shows fewer low values and a larger
proportion of high values than the other categories. This
difference in the frequency distributions for the different
categories decreases for increasing maximum cirrus geometrical
depth (not shown). The distributions become essentially indis-
tinguishable from each other by a maximum cirrus geome-
trical depth of 5.0 km.

We have falsified our hypothesis, and observed a detectable 22%
increase in nCOT in flight tracks for cases where the aircraft was
30 min or less ahead of the satellite overpass. We examined our
data for differences in COT between day- and night-time
CALIPSO overpasses. We did not observe any significant
day-night differences in nCOT, and therefore have included
both kinds of observations in our analysis (Supplementary Fig. 2).

Discussion

Air traffic corridors are far more prevalent in the northern
hemisphere than in the southern hemisphere, so we anticipate
any climatic effects these embedded contrails may have will be
more pronounced there. Even though cloudiness may already be
changed by earlier aircraft, we can isolate the effect of a single
aircraft on cloud properties. Since the effect of aircraft on cloud
properties may well last longer than 30 min the overall effect of
air traffic on cloud properties may be larger than the values
estimated here. Estimating the climatic effects of embedded
contrails is beyond the scope of this paper; however, given the
broad coverage of air traffic corridors in the northern hemisphere,
embedded contrails as identified in this study are potentially an
important and not yet considered contributor to the non-CO,
effects of aviation on climate!”.

Further work will be needed to quantify the effect identified in
this study. Initially, detailed radiative transfer modelling is needed
to assess the impact of an increase in COT on the Earth’s
radiative budget. From the modelling perspective, future studies
will need to estimate the magnitude of the observed effect on a
global scale and assess its contribution to the overall non-CO,

effects of aviation on climate. The increase in cirrus optical depth
may result from the emitted soot in the first few seconds within
the plume. Soot particles are not efficient ice nuclei. They rather
form droplets when water saturation is reached in the plume and
freeze subsequently?®. Hence, the effect on the microphysics of
the cirrus is an open question, and will require detailed
microphysical modelling to address.

Methods

Overall approach. Our empirical approach is based on the ship tracks metho-
dology?!. Ship tracks occur in marine stratocumulus clouds in locations where
cloud albedo increases due to particulate emissions from ships?>?3. Here we apply
a similar observational approach—we investigate the optical and geometrical
properties of cirrus clouds within known flight tracks (that is, a region affected by
aircraft exhaust and contrails) to the ones immediately adjacent on either side of
the flight track (that is, the unperturbed region outside of the main flight routes).
To apply this approach we first need to identify regions in which we are likely to
encounter cirrus clouds that are influenced by air traffic. Favourable regions for this
study should fulfil the following criteria: the aircraft should be flying below the
tropopause and at cirrus level, tropical convection should be of minor influence on
cloud formation (that is, the region should lie outside the ITCZ band), and the area
should be a sufficiently large so that CALIPSO will have multiple transects in a
reasonable amount of time. These criteria rule out the intercontinental polar routes,
since in these regions the aircraft are often flying above the tropopause level.
The most promising routes are in the northern hemisphere mid-latitudes. Data
on aircraft location are used to identify flight tracks.

Spaceborne lidar observations. CALIOP is an elastic-backscatter lidar that emits
linearly polarized laser light at 532 and 1,064 nm and features three measurement
channels. The CALIPSO lidar has been operational since June 2006. An overview of
the instrument and retrieval algorithms can be found in Winker et al.'®. CALIPSO
is a polar orbiting satellite with a return cycle of 16 days.

The spatial and optical properties of cirrus clouds as derived from CALIOP
observations have been carefully validated with airborne lidar measurements?4~27.
CALIOP observations became an invaluable tool for regional and §lobal studies on
the occurrence and properties of cirrus?®-30 and sub-visual cirrus®32, CALIPSO’s
location in the A-Train satellite constellation furthermore enables the addition of
further co-located measurements to the lidar data for advanced cirrus studies®>2,

CALIOP observations in the area 15-55° N and 115-155° W for the years 2010
and 2011 have been considered in this study. We use the level 2 version 3.01
(January 2010-October 2011) and 3.02 (November 2011 to December 2011) 5-km
Cloud Layer products. Data are provided with a horizontal resolution of 5km and
refer to layers starting with the uppermost detected feature.

CALIOP data quality assurance. We only considered CALIOP observations for
which cirrus (feature type = cloud, sub-type = cirrus>>, uppermost two layers are
considered) occurs at the altitude of a coinciding flight track. For quality assurance
we also require these features to be detected at 5-km averaging intervals
(Horizontal_Averaging =5) and to show an Extinction_QC_Flag 532 of zero>*,
Note that data points with an Extinction_QC_Flag 532 other than zero are
virtually absent in our data set. A detailed description of the CALIPSO products
can be found in the CALIPSO’s Data User Guide®.
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CALIOP data selection. We only consider the seven 5-km CALIOP data points to
the north and south of the flight track, respectively. In addition, we require that at
least half of these points (that is, 7 out of 14) show valid COT that fulfils our quality
assurance criteria. This ensures that we observe a signal corresponding to
homogeneous cirrus rather than natural variability of cirrus optical properties. We
consider the three closest CALIPSO observations on either side of the aircraft track
to form the inner part of the flight track (Fig. 1). Depending on the angle between
the flight track and CALIPSO ground path, the inner part of the flight track spreads
over up to 15km to the north and south of the aircraft track. This distance agrees
with the typical contrail width of about 5km’ and allows compensating for minor
advection effects caused by the 30-min (maximum) time interval between the
aircraft and CALIPSO overpasses. Points (4)-(7) in Fig. 1b-d represent the
unperturbed conditions outside of the flight track. This approach provides us with
an overall number of data points that is balanced with respect to the inner and
outer parts of the flight track.

Difference between CALIOP night-time and day-time observations. Owing to
the influence of daylight noise CALIOP feature detection sensitivity is higher at
night than during day time. We therefore examined the data for differences in
day- and night-time measurements. Examples of the mean nCOT for cases in
which the maximum cirrus geometrical depth was 2.5 and 5.0 km are shown in
Supplementary Fig. 2. We did not observe any significant day-night differences in
normalized COT, and therefore have included both kinds of observations in our
analysis.

Data availability. The data that support the findings of this study are available on
request from the corresponding author (K.J.N.).
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