700 research outputs found

    Predictive risk factors for distant metastasis in pediatric differentiated thyroid cancer from Saudi Arabia

    Get PDF
    BackgroundDespite their excellent prognosis, children and young adults (CAYA) with differentiated thyroid cancer (DTC) tend to have more frequent occurrence of distant metastasis (DM) compared to adult DTC. Data about DM in CAYA from Middle Eastern ethnicity is limited.MethodsMedical records of 170 patients with DTC ≤18 years were retrospectively reviewed. Clinico-pathological factors associated with lung metastasis in CAYA, their clinical presentation and outcome were analyzed. Rick factors related to distant metastasis-free survival (DMFS) for the whole cohort were evaluated.ResultsDM was observed in 27 patients and all were lung metastasis. Lung metastasis was significantly associated with younger age (≤15 years), extrathyroidal extension (ETE), multifocal tumors, bilaterality, presence of lymph node (LN) disease and high post-operative stimulated thyroglobulin (sTg). Highest negative predictive values were seen with low post-operative sTg (97.9%), absence of LN disease (93.8%), absence of ETE (92.2%) and age older than 15 years (92.9%). Post-therapy whole body scan (WBS) identified most of the lung metastasis (21 of 27; 77.8%). Upon evaluating patients response according to ATA guidelines, excellent response was seen in only one patient, while biochemical persistence and structural persistence were seen in 11.1% (3/27) and 77.8% (21/27), respectively. Elevated post-operative sTg (>10ng/ml) was the only risk factor found to be significantly associated with both biochemical persistence (with or without structural persistence (p = 0.0143)) and structural persistence (p = 0.0433). Cox regression analysis identified age and post-operative sTg as independent risk factors related to DMFS. Based on these two risk factors for DMFS, patients were divided into 3 groups: low risk (no risk factors), intermediate risk (1 risk factor) and high risk (both risk factors). 20-year DMFS rates in the low-, intermediate- and high-risk groups were 100.0%, 81.3% and 23.7% respectively (p < 0.0001).ConclusionHigher suspicion for metastatic pediatric DTC should be considered in patients who are young, have LN disease, extrathyroidal extension and elevated post-operative sTg. Persistent disease, despite therapy, is very common and it appears to be related to post-operative sTg level. Hence, risk adaptive management is desirable in CAYA with DTC

    New Petro‐aggression in the Middle East: Saudi Arabia in the Spotlight

    Get PDF
    That hydrocarbon abundance may lead to more violence is an established truism in the literature on the resource curse. Looking at the Middle East, however, the literature relates bellicose state behaviour entirely to oil-producing revolutionary republics. Instead, dynastic monarchies are claimed to be the more peacefully behaving actors. Current developments turn this conclusion upside down, however. Since 2015 at the latest, the foreign policy of Saudi Arabia, the leading monarchy in the Middle East, has transformed from multi-dependence to petro-aggression. By discussing this striking transformation, the paper puts forward a framework looking at the interaction of three crucial dimensions: first, the decreasing power projection towards the Middle East by the United States, the decade-long hegemon, due to gradual changes in world energy markets and war fatigue at home; second, the lasting fiscal potency of the Saudi regime; and, third, the personalization of the Saudi monarchy under King Salman as a historically contingent result of transferring power to the generation of Ibn Saud's grandsons

    Screening the growth inhibition mechanism of sulfate reducing bacteria by chitosan/lignosulfonate nanocomposite (CS@LS) in seawater media

    Get PDF
    Sulfate-reducing bacteria (SRBs) induced biofilm formation is a global industrial concern due to its role in the development of microbial-induced corrosion (MIC). Herein, we have developed a biodegradable chitosan/lignosulfonate nanocomposite (CS@LS) as an efficient green biocide for the inhibition of SRBs biofilms. We investigated in detail the inhibition mechanism of SRBs by CS@LS in seawater media. Stable CS@LS-1:1 with 150–200 nm average size, and zeta potential of + 34.25 mV was synthesized. The biocidal performance of CS@LS was evaluated by sulfate reduction profiles coupled with analysis of extracted extracellular polymeric substances (EPS) and lactate dehydrogenase (LDH) release assays. As the nanocomposite concentration was increased from 50 to 500 µg/mL, the specific sulfate reduction rate (SSRR) decreased from 0.278 to 0.036 g-sulfate/g-VSS*day showing a relative sulfate reduction inhibition of 86.64% as compared to that of control. Similarly, the specific organic uptake rate (SOUR) decreased from 0.082 to 0.039 0.036 g-TOC/g-VSS*day giving a relative co-substrate oxidation inhibition of 52.19% as compared to that of control. The SRBs spiked with 500 µg/mL CS@LS showed a reduction in cell viability to 1.5 × 106 MPN/mL. To assess the biosafety of the nanocomposite on the marine biota, the 72-hours acute toxicity assays using zebrafish embryo model revealed that the LC50 for the CS@LS was 103.3 µg/mL. Thus, CS@LS can be classified as environment friendly. The nanocomposite showed long-term stability and excellent antibacterial properties against SRBs growth and is thus potentially useful for combating the problems of biofilm growth in harsh marine and aquatic environments.The authors are grateful for the financial support from NPRP grant (NPRP8-286-02-118) from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors. The authors are thankful to J. Ponraj, M Helal, and M. Pasha at the Core lab of QEERI/HBKU, Doha, Qatar for TEM and SEM analysis, respectively. Open Access funding provided by the Qatar National Library

    Supergravity Solutions from Floating Branes

    Get PDF
    We solve the equations of motion of five-dimensional ungauged supergravity coupled to three U(1) gauge fields using a floating-brane Ansatz in which the electric potentials are directly related to the gravitational warp factors. We find a new class of non-BPS solutions, that can be obtained linearly starting from an Euclidean four-dimensional Einstein-Maxwell base. This class - the largest known so far - reduces to the BPS and almost-BPS solutions in certain limits. We solve the equations explicitly when the base space is given by the Israel-Wilson metric, and obtain solutions describing non-BPS D6 and anti-D6 branes kept in equilibrium by flux. We also examine the action of spectral flow on solutions with an Israel-Wilson base and show that it relates these solutions to almost-BPS solutions with a Gibbons-Hawking base.Comment: 24 pages, 1 figur

    The Nuts and Bolts of Einstein-Maxwell Solutions

    Get PDF
    We find new non-supersymmetric solutions of five-dimensional ungauged supergravity coupled to two vector multiplets. The solutions are regular, horizonless and have the same asymptotic charges as non-extremal charged black holes. An essential ingredient in our construction is a four-dimensional Euclidean base which is a solution to Einstein-Maxwell equations. We construct stationary solutions based on the Euclidean dyonic Reissner-Nordstrom black hole as well as a six-parameter family with a dyonic Kerr-Newman-NUT base. These solutions can be viewed as compactifications of eleven-dimensional supergravity on a six-torus and we discuss their brane interpretation.Comment: 29 pages, 3 figure

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    Clinical Implication of Targeting of Cancer Stem Cells

    Get PDF
    The existence of cancer stem cells (CSCs) is receiving increasing interest particularly due to its potential ability to enter clinical routine. Rapid advances in the CSC field have provided evidence for the development of more reliable anticancer therapies in the future. CSCs typically only constitute a small fraction of the total tumor burden; however, they harbor self-renewal capacity and appear to be relatively resistant to conventional therapies. Recent therapeutic approaches aim to eliminate or differentiate CSCs or to disrupt the niches in which they reside. Better understanding of the biological characteristics of CSCs as well as improved preclinical and clinical trials targeting CSCs may revolutionize the treatment of many cancers. Copyright (c) 2012 S. Karger AG, Base

    ALDH Activity Selectively Defines an Enhanced Tumor-Initiating Cell Population Relative to CD133 Expression in Human Pancreatic Adenocarcinoma

    Get PDF
    Multiple studies in recent years have identified highly tumorigenic populations of cells that drive tumor formation. These cancer stem cells (CSCs), or tumor-initiating cells (TICs), exhibit properties of normal stem cells and are associated with resistance to current therapies. As pancreatic adenocarcinoma is among the most resistant human cancers to chemo-radiation therapy, we sought to evaluate the presence of cell populations with tumor-initiating capacities in human pancreatic tumors. Understanding which pancreatic cancer cell populations possess tumor-initiating capabilities is critical to characterizing and understanding the biology of pancreatic CSCs towards therapeutic ends. cell populations were further examined for co-expression of CD44 and/or CD24. We demonstrate that unlike cell populations demonstrating low ALDH activity, as few as 100 cells enriched for high ALDH activity were capable of tumor formation, irrespective of CD133 expression. In direct xenograft tumors, the proportions of total tumor cells expressing ALDH and/or CD133 in xenograft tumors were unchanged through a minimum of two passages. We further demonstrate that ALDH expression among patients with pancreatic adenocarcinoma is heterogeneous, but the expression is constant in serial generations of individual direct xenograft tumors established from bulk human pancreatic tumors in NOD/SCID mice. phenotypes do not appear to significantly contribute to tumor formation at low numbers of inoculated tumor cells. ALDH expression broadly varies among patients with pancreatic adenocarcinoma and the apparent expression is recapitulated in serial generations of direct xenograft tumors in NOD/SCID. We have thus identified a distinct population of TICs that should lead to identification of novel targets for pancreatic cancer therapy

    Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis and Alzheimer’s disease

    Get PDF
    Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies including atherosclerosis and Alzheimer’s disease (AD). Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses specifically T- and B-cells in periodontitis and related conditions. In periodontitis this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces inflammatory responses related to T- and B-cell activation, and subsequent IFN-ɤ secretion by a subset of T cells. The T cells further suppresses upregulation of programmed cell death-1 (PD-1)-receptor on CD+-cells and its ligand PD-L1 on CD11b+- subset of T-cells. IL-2 down-regulates immune response-regulated genes, induces a cytokine pattern in which the Th17 lineage is favored thereby modulating the Th17/ T-regulatory cell (Treg) imbalance. The suppression of IFN-ɤ stimulated release of interferon-inducible protein-10 (IP-10) chemokine ligands [ITAC (CXCL11) and Mig (CXCL9)] by P. gingivalis capsular serotypes, triggers distinct T-cell responses, and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis P. gingivalis reduces Tregs and transforming growth factor beta-1 (TGF-1) and causes imbalance in the Th17 lineage of the Treg population. In Alzheimer’s disease P. gingivalis may affect the blood-brain barrier permeability, and inhibit local IFN-ɤ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in Alzheimer’s disease neuropathology implies P. gingivalis infection of the brain likely causes impaired clearance of insoluble amyloid and induces immunosuppression. By the effective manipulation of the armory of adaptive immune suppression through a plethora of virulence factors P. gingivalis may act as a keystone organism in periodontitis and in related systemic diseases and other remote body inflammatory pathologies
    corecore