84 research outputs found

    A note on topological amplitudes in hybrid string theory

    No full text
    We study four-dimensional compactifications of type II superstrings on Calabi-Yau spaces using the formalism of hybrid string theory. Chiral and twisted-chiral interactions are rederived, which involve the coupling of the compactification moduli to two powers of the Weyl-tensor and of the derivative of the universal tensor field-strength

    Effects of housing, perches, genetics, and 25-hydroxycholecalciferol on keel bone deformities in laying hens

    Get PDF
    Several studies have shown a high prevalence of keel bone deformities in commercial laying hens. The aim of this project was to assess the effects of perch material, a vitamin D feed additive (25-hydroxyvitamin D3; HyD, DSM Nutritional Products, Basel, Switzerland), and genetics on keel bone pathology. The study consisted of 2 experiments. In the first experiment, 4,000 Lohmann Selected Leghorn hens were raised in aviary systems until 18 wk of age. Two factors were investigated: perch material (plastic or rubber-coated metal) and feed (with and without HyD). Afterward, the hens were moved to a layer house with 8 pens with 2 aviary systems. Daily feed consumption, egg production, mortality, and feather condition were evaluated. Every 6 wk, the keel bones of 10 randomly selected birds per pen were palpated and scored. In the second experiment, 2,000 Lohmann Brown (LB) hens and 2,000 Lohmann Brown parent stock (LBPS) hens were raised in a manner identical to the first experiment. During the laying period, the hens were kept in 24 identical floor pens but equipped with different perch material (plastic or rubber-coated metal). The same variables were investigated as in the first experiment. No keel bone deformities were found during the rearing period in either experiment. During the laying period, deformities gradually appeared and reached a prevalence of 35% in the first experiment and 43.8% in the second experiment at the age of 65 and 62 wk, respectively. In the first experiment, neither HyD nor the aviary system had any significant effect on the prevalence of keel bone deformities. In the second experiment, LBPS had significantly fewer moderate and severe deformities than LB, and rubber-coated metal perches were associated with a higher prevalence of keel bone deformities compared with plastic perches. The LBPS laid more but smaller eggs than the LB. Again, HyD did not affect the prevalence of keel bone deformities. However, the significant effect of breed affiliation strongly indicates a sizeable genetic component that may provide a basis for targeted selectio

    Asymptotic degeneracy of dyonic N=4 string states and black hole entropy

    Full text link
    It is shown that the asymptotic growth of the microscopic degeneracy of BPS dyons in four-dimensional N=4 string theory captures the known corrections to the macroscopic entropy of four-dimensional extremal black holes. These corrections are subleading in the limit of large charges and originate both from the presence of interactions in the effective action quadratic in the Riemann tensor and from non-holomorphic terms. The presence of the non-holomorphic corrections and their contribution to the thermodynamic free energy is discussed. It is pointed out that the expression for the microscopic entropy, written as a function of the dilaton field, is stationary at the horizon by virtue of the attractor equations.Comment: 16 pages Late

    Black hole partition functions and duality

    Full text link
    The macroscopic entropy and the attractor equations for BPS black holes in four-dimensional N=2 supergravity theories follow from a variational principle for a certain `entropy function'. We present this function in the presence of R^2-interactions and non-holomorphic corrections. The variational principle identifies the entropy as a Legendre transform and this motivates the definition of various partition functions corresponding to different ensembles and a hierarchy of corresponding duality invariant inverse Laplace integral representations for the microscopic degeneracies. Whenever the microscopic degeneracies are known the partition functions can be evaluated directly. This is the case for N=4 heterotic CHL black holes, where we demonstrate that the partition functions are consistent with the results obtained on the macroscopic side for black holes that have a non-vanishing classical area. In this way we confirm the presence of a measure in the duality invariant inverse Laplace integrals. Most, but not all, of these results are obtained in the context of semiclassical approximations. For black holes whose area vanishes classically, there remain discrepancies at the semiclassical level and beyond, the nature of which is not fully understood at present.Comment: 36 pages, Late

    The Impact of Fission on R-Process Calculations

    Get PDF
    We have performed r-process calculations in neutron star mergers (NSM) and jets of magnetohydrodynamically driven (MHD) supernovae. In these very neutron-rich environments the fission model of heavy nuclei has an impact on the shape of the final abundance distribution and the second r-process peak in particular. We have studied the effect of different fission fragment mass distribution models in calculations of low-Ye ejecta, ranging from a simple parametrization to extensive statistical treatments (ABLA07). The r-process path ends when it reaches an area in the nuclear chart where fission dominates over further neutron captures. The position of this point is determined by the fission barriers and the neutron separation energies of the nuclei involved. As these values both depend on the choice of the nuclear mass model, so does the r-process path. Here we present calculations using the FRDM (Finite Range Droplet Model) and the ETFSI (Extended Thomas Fermi with Strutinsky Integral) mass model with the related TF and ETFSI fission barrier predictions. Utilizing sophisticated fission fragment distribution leads to a highly improved abundance distribution.Peer reviewe

    Gravitational waves from supernova matter

    Full text link
    We have performed a set of 11 three-dimensional magnetohydrodynamical core collapse supernova simulations in order to investigate the dependencies of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15 solar mass progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ~2 % at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative GW prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.Comment: 10 pages, 6 figures, accepted, to be published in a Classical and Quantum Gravity special issue for MICRA200

    Salmonella enterica serotype Virchow associated with human infections in Switzerland: 2004-2009

    Get PDF
    BACKGROUND: Salmonellosis is one of the most important foodborne diseases and a major threat to public health. Salmonella serotype Virchow ranks among the top five serovars in Europe. METHOD: A total of 153 strains isolated from different patients from 2004 through 2009 in Switzerland were further characterized by (i) assessing phenotypic antibiotic resistance profiles using the disk diffusion method and (ii) by genotyping using pulsed-field gel electrophoresis (PFGE) after macrorestriction with XbaI in order to evaluate strain relationship. RESULTS: The relative frequency of S. Virchow among other Salmonella serovars varied between 4th to 8th rank. The annual incidence ranged from 0.45/100'000 in 2004 to 0.40/100'000 in 2009. A total of 48 strains (32%) were resistant to one to 3 antimicrobials, 54 strains (36%) displayed resistance patterns to more than three antibiotics. No trend was identifiable over the years 2004 to 2009. We found a high prevalence (62%) of nalidixic acid resistant strains, suggesting an equally high rate of decreased fluoroqionolone susceptibility, whereas intermediate resistance to ciprofloxacin was negligible. Two strains were extended spectrum β-lactamase (ESBL) producers. Analysis of PFGE patterns uncovered a predominant cluster (similarity coefficient above 80%) consisting of 104 of the 153 strains. CONCLUSION: The worldwide increase of antibiotic resistances in Salmonella is an emerging public health problem. For Switzerland, no clear trend is identifiable over the years 2004 to 2009 for S. Virchow. Antimicrobial susceptibility and resistance profiles varied considerably within this period. Nevertheless, the situation in Switzerland coincided with findings in other European countries. Genotyping results of this strain collection revealed no evidence for an undetected outbreak within this time period

    In Macrophages, Caspase-1 Activation by SopE and the Type III Secretion System-1 of S. Typhimurium Can Proceed in the Absence of Flagellin

    Get PDF
    The innate immune system is of vital importance for protection against infectious pathogens. Inflammasome mediated caspase-1 activation and subsequent release of pro-inflammatory cytokines like IL-1β and IL-18 is an important arm of the innate immune system. Salmonella enterica subspecies 1 serovar Typhimurium (S. Typhimurium, SL1344) is an enteropathogenic bacterium causing diarrheal diseases. Different reports have shown that in macrophages, S. Typhimurium may activate caspase-1 by at least three different types of stimuli: flagellin, the type III secretion system 1 (T1) and the T1 effector protein SopE. However, the relative importance and interdependence of the different factors in caspase-1 activation is still a matter of debate. Here, we have analyzed their relative contributions to caspase-1 activation in LPS-pretreated RAW264.7 macrophages. Using flagellar mutants (fliGHI, flgK) and centrifugation to mediate pathogen-host cell contact, we show that flagellins account for a small part of the caspase-1 activation in RAW264.7 cells. In addition, functional flagella are of key importance for motility and host cell attachment which is a prerequisite for mediating caspase-1 activation via these three stimuli. Using site directed mutants lacking several T1 effector proteins and flagellin expression, we found that SopE elicits caspase-1 activation even when flagellins are absent. In contrast, disruption of essential genes of the T1 protein injection system (invG, sipB) completely abolished caspase-1 activation. However, a robust level of caspase-1 activation is retained by the T1 system (or unidentified T1 effectors) in the absence of flagellin and SopE. T1-mediated inflammasome activation is in line with recent work by others and suggests that the T1 system itself may represent the basic caspase-1 activating stimulus in RAW264.7 macrophages which is further enhanced independently by SopE and/or flagellin
    corecore