7,245 research outputs found

    Toward reliable morphology assessment of thermosets via physical etching: Vinyl ester resin as an example

    Get PDF
    The morphology of peroxide-cured, styrene crosslinked, bisphenol A-based vinyl ester (VE) resin was investigated by atomic force microscopy (AFM) after ‘physical’ etching with different methods. Etching was achieved by laser ablation, atmospheric plasma treatment and argon ion bombardment. Parameters of the etching were varied to get AFM scans of high topography resolution. VE exhibited a nanoscaled nodular structure the formation of which was ascribed to complex intra- and intermolecular reactions during crosslinking. The microstructure resolved after all the above physical etching techniques was similar provided that optimized etching and suitable AFM scanning conditions were selected. Nevertheless, with respect to the ‘morphology visualization’ these methods follow the power ranking: argon bombardment > plasma treatment > laser ablation

    Towards Global People Detection and Tracking using Multiple Depth Sensors

    Get PDF

    Evaluation of the synoptic and mesoscale predictive capabilities of a mesoscale atmospheric simulation system

    Get PDF
    The overall performance characteristics of a limited area, hydrostatic, fine (52 km) mesh, primitive equation, numerical weather prediction model are determined in anticipation of satellite data assimilations with the model. The synoptic and mesoscale predictive capabilities of version 2.0 of this model, the Mesoscale Atmospheric Simulation System (MASS 2.0), were evaluated. The two part study is based on a sample of approximately thirty 12h and 24h forecasts of atmospheric flow patterns during spring and early summer. The synoptic scale evaluation results benchmark the performance of MASS 2.0 against that of an operational, synoptic scale weather prediction model, the Limited area Fine Mesh (LFM). The large sample allows for the calculation of statistically significant measures of forecast accuracy and the determination of systematic model errors. The synoptic scale benchmark is required before unsmoothed mesoscale forecast fields can be seriously considered

    Using Lorentz forces to control the distribution of bubbles in a vertical tube filled with liquid metal

    Get PDF
    In this work, a method to increase the residence time of bubbles in tubes or pipes filled with liquid metal is investigated. Imposing a horizontal electric current and a perpendicular horizontal magnetic field generates an upward-directed Lorentz force. This force can counteract gravity and cause floating of bubbles. Even with homogeneous electric fields these float in the mean but fluctuate randomly within the swarm due to mutual interactions. In the present case the cylindrical shape of the container furthermore creates inhomogeneous electric currents and an inhomogeneous force distribution resulting in a macroscopic convection pattern stirring the bubbles and further homogenising the spatial distribution of the bubbles.LIMTECHDFG/HE 7529/1-

    Close Pairs as Proxies for Galaxy Cluster Mergers

    Full text link
    Galaxy cluster merger statistics are an important component in understanding the formation of large-scale structure. Unfortunately, it is difficult to study merger properties and evolution directly because the identification of cluster mergers in observations is problematic. We use large N-body simulations to study the statistical properties of massive halo mergers, specifically investigating the utility of close halo pairs as proxies for mergers. We examine the relationship between pairs and mergers for a wide range of merger timescales, halo masses, and redshifts (0<z<1). We also quantify the utility of pairs in measuring merger bias. While pairs at very small separations will reliably merge, these constitute a small fraction of the total merger population. Thus, pairs do not provide a reliable direct proxy to the total merger population. We do find an intriguing universality in the relation between close pairs and mergers, which in principle could allow for an estimate of the statistical merger rate from the pair fraction within a scaled separation, but including the effects of redshift space distortions strongly degrades this relation. We find similar behavior for galaxy-mass halos, making our results applicable to field galaxy mergers at high redshift. We investigate how the halo merger rate can be statistically described by the halo mass function via the merger kernel (coagulation), finding an interesting environmental dependence of merging: halos within the mass resolution of our simulations merge less efficiently in overdense environments. Specifically, halo pairs with separations less than a few Mpc/h are more likely to merge in underdense environments; at larger separations, pairs are more likely to merge in overdense environments.Comment: 12 pages, 9 figures; Accepted for publication in ApJ. Significant additions to text and two figures changed. Added new findings on the universality of pair mergers and added analysis of the effect of FoF linking length on halo merger

    U(3) chiral perturbation theory with infrared regularization

    Get PDF
    We include the eta-prime in chiral perturbation theory without employing 1/N_c counting rules. The method is illustrated by calculating the masses and decay constants of the Goldstone boson octet (pions, kaons, eta) and the singlet eta-prime up to one-loop order. The effective Lagrangian describing the interactions of the eta-prime with the Goldstone boson octet is presented up to fourth chiral order and the loop integrals are evaluated using infrared regularization, which preserves Lorentz and chiral symmetry.Comment: 29 page

    A New Look at the Axial Anomaly in Lattice QED with Wilson Fermions

    Get PDF
    By carrying out a systematic expansion of Feynman integrals in the lattice spacing, we show that the axial anomaly in the U(1) lattice gauge theory with Wilson fermions, as determined in one-loop order from an irrelevant lattice operator in the Ward identity, must necessarily be identical to that computed from the dimensionally regulated continuum Feynman integrals for the triangle diagrams.Comment: 1 figure, LaTeX, 18 page

    The Clustering of Massive Halos

    Get PDF
    The clustering properties of dark matter halos are a firm prediction of modern theories of structure formation. We use two large volume, high-resolution N-body simulations to study how the correlation function of massive dark matter halos depends upon their mass and formation history. We find that halos with the lowest concentrations are presently more clustered than those of higher concentration, the size of the effect increasing with halo mass; this agrees with trends found in studies of lower mass halos. The clustering dependence on other characterizations of the full mass accretion history appears weaker than the effect with concentration. Using the integrated correlation function, marked correlation functions, and a power-law fit to the correlation function, we find evidence that halos which have recently undergone a major merger or a large mass gain have slightly enhanced clustering relative to a randomly chosen population with the same mass distribution.Comment: 10 pages, 8 figures; text improved, references and one figure added; accepted for publication in Ap

    Molecular basis for passive immunotherapy of Alzheimer's disease

    Get PDF
    Amyloid aggregates of the amyloid-{beta} (A{beta}) peptide are implicated in the pathology of Alzheimer's disease. Anti-A{beta} monoclonal antibodies (mAbs) have been shown to reduce amyloid plaques in vitro and in animal studies. Consequently, passive immunization is being considered for treating Alzheimer's, and anti-A{beta} mAbs are now in phase II trials. We report the isolation of two mAbs (PFA1 and PFA2) that recognize A{beta} monomers, protofibrils, and fibrils and the structures of their antigen binding fragments (Fabs) in complex with the A{beta}(1–8) peptide DAEFRHDS. The immunodominant EFRHD sequence forms salt bridges, hydrogen bonds, and hydrophobic contacts, including interactions with a striking WWDDD motif of the antigen binding fragments. We also show that a similar sequence (AKFRHD) derived from the human protein GRIP1 is able to cross-react with both PFA1 and PFA2 and, when cocrystallized with PFA1, binds in an identical conformation to A{beta}(1–8). Because such cross-reactivity has implications for potential side effects of immunotherapy, our structures provide a template for designing derivative mAbs that target A{beta} with improved specificity and higher affinity
    • …
    corecore