
Towards Global People Detection and Tracking
using Multiple Depth Sensors

Johannes Wetzel, Samuel Zeitvogel, Astrid Laubenheimer
Intelligent Systems Research Group (ISRG)
Karlsruhe University of Applied Sciences

Karlsruhe, Germany
{johannes.wetzel,samuel.zeitvogel,astrid.laubenheimer}@hs-karlsruhe.de

Michael Heizmann
Institute of Industrial Information Technology (IIIT)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

michael.heizmann@kit.edu

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 0.1109/ISETC.2018.8583962

Abstract—In this work a novel approach for multi depth sensor
person detection and tracking from top view is presented. We
propose a probabilistic framework formulating the problem of
people detection in multiple overlapping depth images as an
inverse problem. As a generative forward model, we employ
a simple differentiable 3D person model allowing us to detect
people from arbitrary viewpoints. Furthermore, we extend our
probabilistic framework to allow for tracking of individuals
over time. Finally, we show how to solve for the global person
trajectories exploiting differentiable rendering. The preliminary
evaluation shows promising qualitative results of our approach
on samples of three stereo vision based depth sensors observing
an indoor scene.

Index Terms—multi camera person detection and tracking;
multi sensor fusion; network of depth cameras; inverse graphics;
inverse problem; generative model; differentiable rendering

I. INTRODUCTION

Tracking and detection of people in a network of cameras is
a vital preprocessing task for many applications such as video
surveillance, sport game analysis, ambient assisted living, etc.
The vast majority of the related literature focuses on the
classical video surveillance scenario, capturing the pedestrians
from profile and frontal view using 2D video cameras. In this
work we focus on a different setup. We address the problem
of indoor people detection and tracking using a network of
stereo vision based depth sensors. In contrast to the classical
video surveillance scenario, the sensors capture the scene from
a top view to resolve occlusion in crowded scenes. Due to
drastic view point change the persons strongly vary in their
appearance, making it very challenging for classical discrimi-
native pedestrian detectors. Moreover, the majority of existing
literature of multi camera tracking relies on a local detection
approach, where the local detections from every sensor are
merged into a global coordinate system. Instead, we formulate
the problem of people detection and tracking in multiple depth
images as inverse problem, seeking to overcome the challenges
mentioned above in two ways:

1) Generative person model: In contrast to discriminative
pedestrian detection algorithms we employ a generative
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3D person model, leading to a view-point independent
detector which does not depend on a huge training set.

2) Global detection and tracking: Our approach models
the detection and tracking with a global probability
distribution conditioned on all observations at every time
step. Thus, the given dependency between all camera
views can be exploited in a natural way. Our approach
is capable of integrating redundant as well as comple-
mentary information from different views, attempting to
resolve occlusion as well as measurement noise.

II. RELATED WORK

Multi camera people detection and tracking has been widely
studied in the context of video surveillance. The vast majority
of those approaches are based on multiple 2D video cameras
observing an outdoor scene. However the topic of people
detection and tracking with a network of depth cameras,
especially in top down view, is not well studied yet. Therefore
we will first discuss the different methods of the classical
video surveillance literature and later focus on the more
specialized depth sensor setup we address in this work. The
task of tracking people in a multi camera network can be
divided into approaches working across non-overlapping views
[1] and overlapping views [2]. In this work we will only
focus on approaches working across overlapping views. For
a comprehensive review of multi camera people tracking we
refer to [3], [4]. For the rest of this section we categorize the
literature on multi camera person tracking in approaches based
on local detection and tracking, homography based approaches
and inverse problem approaches.

Since detecting and tracking people in a single camera
image has been intensivly studied [5], [6] a lot of approaches
rely on fusing local detections or local tracklets into a common
coordinate system. The fusion of the tracklets of different
cameras can be achieved by spatio temporal features [7] and
appearance based features [8]. Since each camera is detecting
people independently, those approaches do not make full use
of the given multi view information, making it very difficult
to handle occlusion. Moreover, the applied standard people
detectors are optimized to detect pedestrians in frontal view
and profile view but not in the top view [9] making them
insufficient for our setup.
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Homography based approaches project local image cues,
e.g. single points of interest, pixel intensities or the silhouette
of a blob on a common plane and fuse this representation
across all views to get global detections [10]. Eshel et al. [11]
project the foreground pixels of all views into common height
planes to detect the heads of people. Kahn et al. [2] focuses
on the region around the foot point of people proposing the
homographic occupancy constraint to handle occlusion. Peng
et al. [12] extends those approaches by a multi view Bayesian
network to avoid ”phantom” detections due to heavy occlusion.
However, all mentioned approaches rely heavily on a good 2D
foreground segmentation, hence suffering from noise, shadows
and illumination changes.

A more generic class of approaches formulates the problem
of multi camera people detection as an inverse problem by em-
ploying a generative person model and minimize the difference
between the image evidence of all cameras and the synthetic
images. Fleuret et al. [13] propose a probabilistic framework
for multi camera people detection and tracking using a simple
generative person model in form of a rectangular bounding
box. Alahi et al. [14] present a similar approach using a more
complex silhouette as a generative forward model. In contrast
to our method, both approaches employ only 2D forward
models and fit the model to a binary foreground mask.

Tseng et al. [15] present an indoor surveillance system,
based on multiple top view kinect depth cameras. For each
camera they obtain a virtual top view depth image based on
the given point cloud, finally stitching a global depth image.
Moreover, they apply a hemiellipsoidal head model to detected
people in the global depth image. However, the approach relies
on high quality depth data and is limited to the top view.

The present work is inspired by [13] but in contrast we are
using depth images as evidence and propose a differentiable
generative 3D model using OpenDR [16], allowing us to
effectively detect people in arbitrary viewpoints. To the best of
our knowledge, the problem of people detection and tracking
in multiple top view depth images has not yet been formulated
as inverse problem using a differentiable generative 3D model.

III. APPROACH

We formulate the people detection and tracking problem as
an inverse problem using a generative 3D person model. In the
literature this method is also referred to as vision-as-inverse-
graphics or analysis-by-synthesis. We assume that the sensors
are intrinsically and extrinsically calibrated in advance. Let
Pc = Kc[Rc|~tc] be the projection matrix for each camera
c, with Kc being the intrinsic camera matrix and [Rc|~tc]
the extrinsic transformation which maps a point from the
common world coordinate system to the corresponding camera
coordinate system. For convenience, we assume that we know
the number of people n in the scene a priori. In a practical
system, this limitation can be overcome by applying a 2D
detector or make use of an iterative scheme trying to find the
true value for n. For better understanding, we will first discuss
the detection framework for a single time step and afterwards
extend it, incorporating a sequence of frames.

Let n be the number of people in the scene and ~X =
(~x1, . . . , ~xn) be the vector describing the person locations
~x ∈ R2 in ground plane world coordinates. Our goal is to
infer how probable a scene configuration ~X explains the given
observations ~O = (O1, . . . , OC) from C cameras at the same
time step. In this work we use depth images as observations.
Applying Bayes’ theorem we get the posterior distribution

p( ~X| ~O) =
p( ~O| ~X)p( ~X)

p( ~O)
. (1)

A. Likelihood

We assume that, the views are independent for a fixed
configuration ~X . Thus, the likelihood factorizes as follows:

p(O1, ..., OC | ~X) =

C∏
c=1

p(Oc| ~X). (2)

We model the likelihood using a generative forward model
G(·) which maps a scene configuration ~X and a given projec-
tion matrix Pc to a synthetic observation (i.e. synthetic depth
image) from camera c using a simple 3D person model. The
model consists of a cylinder for the body and a sphere for the
head, see Fig.1(c). For rendering, we use the differentiable
renderer OpenDR [16]. Assuming that our given observations
suffer from Gaussian noise, we can formulate the likelihood
as

p(Oc| ~X, σ) ∝ exp

(
− 1

2σ2
||Oc −G( ~X,Pc)||2

)
. (3)

We incorporate the physical model of the sensor in a natural
way in to our framework, allowing us to detect people from
arbitrary viewpoints and to easily integrate a new sensor
modality into the network.

B. Prior

For the detection we employ two independent priors,
pbox( ~X) and pdist( ~X), hence p( ~X) = pbox( ~X)pdist( ~X). Since
we can estimate the visible ground plane of the sensor net-
work, we model this knowledge as a uniform distributed prior
for every person location in the observable rectangular area,
thus we can write

pbox( ~X) =

n∏
i=1

p(~xi), p(~xi) = U(~xmin, ~xmax) (4)

with U(~xmin, ~xmax) being the uniform distribution over
the approximated rectangular area given by the interval
[~xmin, ~xmax]. The second prior exploits the assumption that
two individuals are keeping a certain distance to each other.
Since we assume that the probability pdist( ~X) depends only on
the joint probabilities of all possible location pairs, we model
the second prior as

pdist(~xi, . . . , ~xn) =

n−1∏
i=1

n∏
j=i+1

p(~xi, ~xj). (5)

Modelling the joint probability between two locations as a zero
mean Gaussian with respect to the inverse distance d(~xi, ~xj) =
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Fig. 1. Example from an indoor sequence with three sensors. A column corresponds to one sensor, row (a) shows the camera images with reprojected foot
points of the inferred detections, (b) shows the observed depth images after background subtraction, used as input for our approach, (c) shows the corresponding
synthetic depth images.

1/(||~xi− ~xj ||+ ε) we can write the pairwise joint probability
distribution as

p(~xi, ~xj |σ) ∝ exp

(
− 1

2σ2
||d(~xi, ~xj)||2

)
. (6)

C. Maximum a posteriori estimation

To find the maximum a posteriori (MAP) scene configura-
tion as defined in (1) we solve the following non-linear least-
squares problem:

~X∗ = argmax ~X p( ~X|O1, . . . , Oc)

= argmin ~X

C∑
c=1

||Oc −G( ~X,Pc)||2 + αEbox + βEdist

(7)

We approximate the box prior in (4) in a way that is compu-
tational preferable for continuous numerical optimization. Let
xi,r be r-th component of ~xi, then the box penalty is given as

Ebox =

n∑
i=1

∑
r∈{1,2}

[max(xmin,r − xi,r, 0)

+ max(xi,r − xmax,r, 0)]
2.

(8)

The distance energy term is a direct result of the prior proposed
in (5), with an additional max function, which makes sure that
the costs are zero for all pairwise distances larger than δ = 1m:

Edist =

n−1∑
i=1

n∑
j=i+1

[
max

(
d(~xi, ~xj)− δ−1, 0

)]2
. (9)

The final non linear least squares problem is solved using
a trust region method like dogleg, exploiting the gradients
provided by the differentiable renderer framework OpenDR
[16]. For better convergence we apply a coarse to fine strategy
using a Gaussian image pyramid.

D. Tracking

So far, we have discussed inferring the locations ~Xt of
people given the observation of all cameras for one time step t.
Given a time series of m observations O = ( ~O1, . . . , ~Om) we
can extend the framework defined above to infer the location
of every individual at every time step X = ( ~X1, . . . , ~Xm).
We rewrite the posterior distribution in (1) as

p(X|O) =

[∏
t

∏
c p(O

t
c| ~Xt)

]
p(X )

p(O)
. (10)



We employ an additional prior ptime(X ) which represents the
dynamics between consecutive observations. Since we assume
only small movements between two frames, we use a simple
Markov model

ptime(X ) =
m∏
t=2

n∏
i=1

p(~xti|~xt−1i ) (11)

assuming that a person location at time step ~xt is just a noisy
version of its predecessor ~xt−1, thus we can write

p(~xti|~xt−1i ,Σ) = N (~xt−1i ,Σ). (12)

Since the likelihood and prior terms defined in (2) and (4,5)
respectively are staying the same for every single time step,
we only need to sum those up over time and add the additional
energy term for the prior ptime(X ). The total MAP objective
for global detection and tracking is then given as

X ∗ = argminX

m∑
t=1

C∑
c=1

||Ot
c −G( ~Xt,Pc)||2

+α

m∑
t=1

Ebox + β

m∑
t=1

Edist + γ

m∑
t=2

|| ~Xt − ~Xt−1||2.
(13)

IV. EVALUATION

Due to the lack of a publicly available dataset for multi
depth sensor people detection and tracking in top view, we
present preliminary qualitative experiments, showing the ap-
plicability of our approach. We evaluate our approach on an
indoor office scene recorded from three stereo vision based
depth sensors. The sensors have a top view on the scene and
are mounted at a height of three meters, having a significant
overlap to each other, see Fig. 1(a). As input observations we
use foreground depth images in a resolution of 376 × 240,
obtained by static background subtraction, see Fig. 1(b). We
use α = 0.1, β = 0.01, γ = 0.01 as weight parameters for the
regularization terms in (13).

Fig. 1 illustrates the MAP solution for one sample frame.
Our generative model (Fig. 1(c)) is able to explain the given
observations (Fig. 1(b)) quite well. Notice how our approach
makes use of all image evidence, even if people are only
partially visible. This improves the global detection result. In
Fig. 2 we use the image evidence of two sensors only. People
are correctly located, even when heavy occlusion is present
(Fig. 2(a)) and the viewpoint is quite extreme (Fig. 2(b)).

V. CONCLUSION

In the present work we have addressed the problem of
people detection and tracking in multiple overlapping depth
images as an inverse problem. We have proposed a natural
probabilistic formulation for people detection and tracking,
using a generative 3D person model. Moreover, we have
shown how to solve for the global MAP solution, exploiting
differentiable rendering.

Future work will include a quantitative evaluation of the
proposed approach as well as the investigation of approximate
bayesian inference methods such as Markov chain Monte

(a) (b)

(c) (d)

Fig. 2. Example with two sensors. A column corresponds to one sensor. Fig.
(a) and (b) show the camera images, (c) and (d) the observed depth images.

Carlo or variational inference to not only approximate the
full posterior distribution but also overcome the shortcomings
of the proposed gradient based optimization strategies, e.g. the
a priori needed number of persons in the scene.
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