35,623 research outputs found

    Research accomplished at the Knowledge Based Systems Lab: IDEF3, version 1.0

    Get PDF
    An overview is presented of the foundations and content of the evolving IDEF3 process flow and object state description capture method. This method is currently in beta test. Ongoing efforts in the formulation of formal semantics models for descriptions captured in the outlined form and in the actual application of this method can be expected to cause an evolution in the method language. A language is described for the representation of process and object state centered system description. IDEF3 is a scenario driven process flow modeling methodology created specifically for these types of descriptive activities

    Ti and V layers retard interaction between Al films and polycrystalline Si

    Get PDF
    Fine-grained polycrystalline Si (poly Si) in contact with Al films recrystallizes at temperatures well below the Si-Al eutectic (577 °C). We show that this interaction can be deferred or suppressed by placing a buffer layer of Ti or V between the Al film and the poly Si. During annealing, Ti or V form TiAl3 or Val3 at the buffer-layer–Al-film interface, but do not react with the poly Si so that the integrity of the poly Si is preserved as long as some unreacted Ti or V remains. The reaction between the Ti or V layer and the Al film is transport limited ([proportional]t^1/2) and characterized by the diffusion constants 1.5×10^15 exp(–1.8eV/kT) Å^2/sec or 8.4×10^12 exp(–1.7eV/kT) Å^2/sec, respectively

    Sequence of phase formation in planar metal-Si reaction couples

    Get PDF
    A correlation is found between the sequence of phase formation in thin-film metal-Si interactions and the bulk equilibrium phase diagram. After formation of the first silicide phase, which generally follows the rule proposed by Walser and Bené, the next phase formed at the interface between the first phase and the remaining element (Si or metal) is the nearest congruently melting compound richer in the unreacted element. If the compounds between the first phase and the remaining element are all noncongruently melting compounds (such as peritectic or peritectoid phases), the next phase formed is that with the smallest temperature difference between the liquidus curve and the peritectic (or peritectoid) point

    Heterostructure by solid‐phase epitaxy in the Si〈111〉/Pd/Si (amorphous) system

    Get PDF
    When a thin film of Pd reacts with a 〈111〉 Si substrate, a layer of epitaxial Pd_2Si is formed. It is shown that Si can grow epitaxially on such a layer by solid‐phase reaction

    Growing Massive Black Hole Pairs in Minor Mergers of Disk Galaxies

    Full text link
    We perform a suite of high-resolution smoothed particle hydrodynamics simulations to investigate the orbital decay and mass evolution of massive black hole (MBH) pairs down to scales of ~30 pc during minor mergers of disk galaxies. Our simulation set includes star formation and accretion onto the MBHs, as well as feedback from both processes. We consider 1:10 merger events starting at z~3, with MBH masses in the sensitivity window of the Laser Interferometer Space Antenna, and we follow the coupling between the merger dynamics and the evolution of the MBH mass ratio until the satellite galaxy is tidally disrupted. While the more massive MBH accretes in most cases as if the galaxy were in isolation, the satellite MBH may undergo distinct episodes of enhanced accretion, owing to strong tidal torques acting on its host galaxy and to orbital circularization inside the disk of the primary galaxy. As a consequence, the initial 1:10 mass ratio of the MBHs changes by the time the satellite is disrupted. Depending on the initial fraction of cold gas in the galactic disks and the geometry of the encounter, the mass ratios of the MBH pairs at the time of satellite disruption can stay unchanged or become as large as 1:2. Remarkably, the efficiency of MBH orbital decay correlates with the final mass ratio of the pair itself: MBH pairs that increase significantly their mass ratio are also expected to inspiral more promptly down to nuclear-scale separations. These findings indicate that the mass ratios of MBH pairs in galactic nuclei do not necessarily trace the mass ratios of their merging host galaxies, but are determined by the complex interplay between gas accretion and merger dynamics.Comment: 5 pages, 4 figures, replaced to match accepted version on Ap

    The Emotional Self-Efficacy Scale: Adaptation and Validation for Young Adolescents

    Get PDF
    Emotional self-efficacy (ESE) is an important aspect of emotional functioning, with current measures for children and adolescents focused on the measurement of self-beliefs in relation to the management of emotions. In the present study, we report the psychometric properties of the first adaptation of the Emotional Self-Efficacy Scale for youth (Youth-ESES) that measures additional aspects of ESE, such as perceiving and understanding emotions and helping others modulate their emotions. Participants were 192 young adolescents aged 11 to 13 years from a U.K. state school. They completed the Youth-ESES and measures of ability emotional intelligence (EI) and cognitive ability. Results support the same four-factor structure that has been previously documented using the adult version of the ESES, with the four subscales being largely independent from cognitive ability and only moderately related to ability EI. However, the four subscales were less differentiated in the present study compared with adult data previously published, suggesting that there is a strong general factor underlying young adolescents’ ESE scores. Overall, the results suggest that the adapted Youth-ESES can be reliably used with youth, and that confidence in how a young person feels about his or her emotional functioning remains distinct from emotional skill

    Deep learning with convolutional neural networks for decoding and visualization of EEG pathology

    Get PDF
    We apply convolutional neural networks (ConvNets) to the task of distinguishing pathological from normal EEG recordings in the Temple University Hospital EEG Abnormal Corpus. We use two basic, shallow and deep ConvNet architectures recently shown to decode task-related information from EEG at least as well as established algorithms designed for this purpose. In decoding EEG pathology, both ConvNets reached substantially better accuracies (about 6% better, ~85% vs. ~79%) than the only published result for this dataset, and were still better when using only 1 minute of each recording for training and only six seconds of each recording for testing. We used automated methods to optimize architectural hyperparameters and found intriguingly different ConvNet architectures, e.g., with max pooling as the only nonlinearity. Visualizations of the ConvNet decoding behavior showed that they used spectral power changes in the delta (0-4 Hz) and theta (4-8 Hz) frequency range, possibly alongside other features, consistent with expectations derived from spectral analysis of the EEG data and from the textual medical reports. Analysis of the textual medical reports also highlighted the potential for accuracy increases by integrating contextual information, such as the age of subjects. In summary, the ConvNets and visualization techniques used in this study constitute a next step towards clinically useful automated EEG diagnosis and establish a new baseline for future work on this topic.Comment: Published at IEEE SPMB 2017 https://www.ieeespmb.org/2017

    Providing the Third Dimension: High-resolution Multibeam Sonar as a Tool for Archaeological Investigations - An Example from the D-day Beaches of Normandy

    Get PDF
    In general, marine archaeological investigations begin in the archives, using historic maps, coast surveys, and other materials, to define submerged areas suspected to contain potentially significant historical sites. Following this research phase, a typical archaeological survey uses sidescan sonar and marine magnetometers as initial search tools. Targets are then examined through direct observation by divers, video, or photographs. Magnetometers can demonstrate the presence, absence, and relative susceptibility of ferrous objects but provide little indication of the nature of the target. Sidescan sonar can present a clear image of the overall nature of a target and its surrounding environment, but the sidescan image is often distorted and contains little information about the true 3-D shape of the object. Optical techniques allow precise identification of objects but suffer from very limited range, even in the best of situations. Modern high-resolution multibeam sonar offers an opportunity to cover a relatively large area from a safe distance above the target, while resolving the true three-dimensional (3-D) shape of the object with centimeter-level resolution. A clear demonstration of the applicability of highresolution multibeam sonar to wreck and artifact investigations occurred this summer when the Naval Historical Center (NHC), the Center for Coastal and Ocean Mapping (CCOM) at the University of New Hampshire, and Reson Inc., collaborated to explore the state of preservation and impact on the surrounding environment of a series of wrecks located off the coast of Normandy, France, adjacent to the American landing sectors The survey augmented previously collected magnetometer and high-resolution sidescan sonar data using a Reson 8125 high-resolution focused multibeam sonar with 240, 0.5° (at nadir) beams distributed over a 120° swath. The team investigated 21 areas in water depths ranging from about three -to 30 meters (m); some areas contained individual targets such as landing craft, barges, a destroyer, troop carrier, etc., while others contained multiple smaller targets such as tanks and trucks. Of particular interest were the well-preserved caissons and blockships of the artificial Mulberry Harbor deployed off Omaha Beach. The near-field beam-forming capability of the Reson 8125 combined with 3-D visualization techniques provided an unprecedented level of detail including the ability to recognize individual components of the wrecks (ramps, gun turrets, hatches, etc.), the state of preservation of the wrecks, and the impact of the wrecks on the surrounding seafloor

    Observable Dependent Quasi-Equilibrium in Slow Dynamics

    Full text link
    We present examples demonstrating that quasi-equilibrium fluctuation-dissipation behavior at short time differences is not a generic feature of systems with slow non-equilibrium dynamics. We analyze in detail the non-equilibrium fluctuation-dissipation ratio X(t,tw) associated with a defect-pair observable in the Glauber-Ising spin chain. It turns out that X1X \neq 1 throughout the short-time regime and in particular X(tw,tw) = 3/4 for twtw \to \infty. The analysis is extended to observables detecting defects at a finite distance from each other, where similar violations of quasi-equilibrium behaviour are found. We discuss our results in the context of metastable states, which suggests that a violation of short-time quasi-equilibrium behavior could occur in general glassy systems for appropriately chosen observables.Comment: 17 pages, 5 figures; substantially improved version of cond-mat/040571

    Heteroepitaxy of deposited amorphous layer by pulsed electron-beam irradiation

    Get PDF
    We demonstrate that a single short pulse of electron irradiation of appropriate energy is capable of recrystallizing epitaxially an amorphous Ge layer deposited on either or Si single-crystal substrate. The primary defects observed in the case were dislocations, whereas stacking faults were observed in samples
    corecore