7,385 research outputs found

    Coulomb blockade effects in driven electron transport

    Full text link
    We study numerically the influence of strong Coulomb repulsion on the current through molecular wires that are driven by external electromagnetic fields. The molecule is described by a tight-binding model whose first and last site is coupled to a respective lead. The leads are eliminated within a perturbation theory yielding a master equation for the wire. The decomposition into a Floquet basis enables an efficient treatment of the driving field. For the electronic excitations in bridged molecular wires, we find that strong Coulomb repulsion significantly sharpens resonance peaks which broaden again with increasing temperature. By contrast, Coulomb blockade has only a small influence on effects like non-adiabatic electron pumping and coherent current suppression.Comment: 9 pages, 7 figures. Added a plot for temperature dependence of resonance peaks. Published versio

    Frustration of decoherence in YY-shaped superconducting Josephson networks

    Full text link
    We examine the possibility that pertinent impurities in a condensed matter system may help in designing quantum devices with enhanced coherent behaviors. For this purpose, we analyze a field theory model describing Y- shaped superconducting Josephson networks. We show that a new finite coupling stable infrared fixed point emerges in its phase diagram; we then explicitly evidence that, when engineered to operate near by this new fixed point, Y-shaped networks support two-level quantum systems, for which the entanglement with the environment is frustrated. We briefly address the potential relevance of this result for engineering finite-size superconducting devices with enhanced quantum coherence. Our approach uses boundary conformal field theory since it naturally allows for a field-theoretical treatment of the phase slips (instantons), describing the quantum tunneling between degenerate levels.Comment: 11 pages, 5 .eps figures; several changes in the presentation and in the figures, upgraded reference

    Supersymmetric Extensions of Calogero--Moser--Sutherland like Models: Construction and Some Solutions

    Full text link
    We introduce a new class of models for interacting particles. Our construction is based on Jacobians for the radial coordinates on certain superspaces. The resulting models contain two parameters determining the strengths of the interactions. This extends and generalizes the models of the Calogero--Moser--Sutherland type for interacting particles in ordinary spaces. The latter ones are included in our models as special cases. Using results which we obtained previously for spherical functions in superspaces, we obtain various properties and some explicit forms for the solutions. We present physical interpretations. Our models involve two kinds of interacting particles. One of the models can be viewed as describing interacting electrons in a lower and upper band of a one--dimensional semiconductor. Another model is quasi--two--dimensional. Two kinds of particles are confined to two different spatial directions, the interaction contains dipole--dipole or tensor forces.Comment: 21 pages, 4 figure

    Dimensional Crossover in Bragg Scattering from an Optical Lattice

    Full text link
    We study Bragg scattering at 1D optical lattices. Cold atoms are confined by the optical dipole force at the antinodes of a standing wave generated inside a laser-driven high-finesse cavity. The atoms arrange themselves into a chain of pancake-shaped layers located at the antinodes of the standing wave. Laser light incident on this chain is partially Bragg-reflected. We observe an angular dependence of this Bragg reflection which is different to what is known from crystalline solids. In solids the scattering layers can be taken to be infinitely spread (3D limit). This is not generally true for an optical lattice consistent of a 1D linear chain of point-like scattering sites. By an explicit structure factor calculation we derive a generalized Bragg condition, which is valid in the intermediate regime. This enables us to determine the aspect ratio of the atomic lattice from the angular dependance of the Bragg scattered light.Comment: 4 pages, 5 figure

    Ray splitting in paraxial optical cavities

    Full text link
    We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive Lyapunov exponent.Comment: 13 pages, 7 figures, 1 tabl
    corecore