798 research outputs found

    High-Temperature Processing of Solids Through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles

    Full text link
    A fundamental, unsolved problem in Solar System formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks has been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through 3D radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H2_2 is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ∼\simfew×10−8\times10^{-8} L⊙_{\odot}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.Comment: Accepted for publication in ApJ. Images have been resized to conform to arXiv limits, but are all readable upon adjusting the zoom. Changes from v1: Corrected typos discovered in proofs. Most changes are in the appendi

    The Inward Bulge Type Buckling of Monocoque Cylinders IV : Experimental Investigation of Cylinders Subjected to Pure Bending

    Get PDF
    Eighteen 24S-T alclad cylinders of 20-inch diameter, with skin thickness varying between 0.012 inch and 0.025 inch and length varying between 40.5 inches and 64 inches, were tested in pure bending. They were reinforced with either 16 or 28 stringers and either 5 or 6 rings. One of the purposes of the investigation was to establish the critical value above which failure would occur by general instability and below which panel instability would take place. This value was found to be between 20 and 40 for cylinders with 16 stringers and between 16 and 74 for cylinders with 28 stringers

    Some Investigations of the General Instability of Stiffened Metal Cylinders V : Stiffened Metal Cylinders Subjected to Pure Bending

    Get PDF
    This report summarizes the work that has been carried on in the experimental investigation of the problem of general instability of stiffened metal cylinders subjected to pure bending at the C.I.T. This part of the investigation included tests of 46 sheet-covered specimens. The most significant result was the determination of a new design parameter for the case of a stiffened metal cylinder subjected to pure bending

    The Case for Space Environmentalism

    Get PDF
    The shell bound by the Karman line at a height of 80 to 100km above the Earth's surface, and Geosynchronous Orbit, at 36,000km, is defined as the orbital space surrounding the Earth. It is within this region, and especially in Low Earth Orbit (LEO), where environmental issues are becoming urgent because of the rapid growth of the anthropogenic space object population, including satellite "mega-constellations". In this Perspective, we summarise the case that the orbital space around the Earth should be considered an additional ecosystem, and so subject to the same care and concerns and the same broad regulations as, for example, the oceans and the atmosphere. We rely on the orbital space environment by looking through it as well as by working within it. Hence, we should consider damage to professional astronomy, public stargazing and the cultural importance of the sky, as well as the sustainability of commercial, civic and military activity in space. Damage to the orbital space environment has problematic features in common with other types of environmental issue. First, the observed and predicted damage is incremental and complex, with many contributors. Second, whether or not space is formally and legally seen as a global commons, the growing commercial exploitation of what may appear a "free" resource is in fact externalising the true costs.Comment: 19 pages, 6 figures. To be published in Nature Astronomy April 22nd 2022. For consistency with Nature policy, the version posted here is the final submitted author text. The final version is available at the DOI below, and differs slightly in wordin

    Study of the bipolar jet of the YSO Th 28 with VLT/SINFONI: Jet morphology and H2_2 emission

    Full text link
    Context.Context. The YSO Th 28 possesses a highly collimated jet, which clearly exhibits an asymmetric brightness of its jet lobes at optical and NIR wavelengths. There may be asymmetry in the jet plasma parameters in opposite jet lobes (e.g. electron density, temperature, and outflow velocity). Aims.Aims. We examined the Th 28 jet in a 3"x3" where the jet material is collimated and accelerated. Our goal is to map the morphology and determine its physical parameters to determine the physical origin of such asymmetries. Methods.Methods. We present JHKJHK-spectra of Th 28 obtained with the SINFONI on the (VLT, ESO) in June-July 2015. Results.Results. The [Fe II] emission originates in collimated jet lobes. Two new axial knots are detected at 1" in the blue lobe and 1".2 in the red lobe. The H2_2 radiation is emitted from an extended region with a radius of ≳270\gtrsim270 au, which is perpendicular to the jet. The PV diagrams of the bright H2_2 lines reveal faint H2_2 emission along both jet lobes as well. The compact and faint H I emission (Paβ\beta and Brγ\gamma) comes from two regions, namely from a spherical region around the star and from the jet lobes. The size of the jet launching region is derived as 0".015 (∼\sim3 au at 185 pc), and the initial opening angle of the Th 28 jet is ∼280\sim28^0, which makes this jet substantially less collimated than most jets from other CTTs. Conclusions.Conclusions. The emission in [Fe II], H2_2, and H I lines suggests a morphology in which the ionised gas in the disc appears to be disrupted by the jet. The resolved disc-like H2_2 emission most likely arises in the disc atmosphere from shocks caused by a radial uncollimated wind. The asymmetry of the [Fe II] photocentre shifts with respect to the jet source arises in the immediate vicinity of the driving source of Th28 and suggests that the observed brightness asymmetry is intrinsic as well.Comment: 18 pages, 14 figure

    Gravitational Instabilities, Chondrule Formation, and the FU Orionis Phenomenon

    Full text link
    Using analytic arguments and numerical simulations, we examine whether chondrule formation and the FU Orionis phenomenon can be caused by the burst-like onset of gravitational instabilities (GIs) in dead zones. At least two scenarios for bursting dead zones can work, in principle. If the disk is on the verge of fragmention, GI activation near r∼4r\sim4 to 5 AU can produce chondrule-forming shocks, at least under extreme conditions. Mass fluxes are also high enough during the onset of GIs to suggest that the outburst is related to an FU Orionis phenomenon. This situation is demonstrated by numerical simulations. In contrast, as supported by analytic arguments, if the burst takes place close to r∼1r\sim1 AU, then even low pitch angle spiral waves can create chondrule-producing shocks and outbursts. We also study the stability of the massive disks in our simulations against fragmentation and find that although disk evolution is sensitive to changes in opacity, the disks we study do not fragment, even at high resolution and even for extreme assumptions.Comment: To appear in Ap

    The inverse moment problem for convex polytopes

    Full text link
    The goal of this paper is to present a general and novel approach for the reconstruction of any convex d-dimensional polytope P, from knowledge of its moments. In particular, we show that the vertices of an N-vertex polytope in R^d can be reconstructed from the knowledge of O(DN) axial moments (w.r.t. to an unknown polynomial measure od degree D) in d+1 distinct generic directions. Our approach is based on the collection of moment formulas due to Brion, Lawrence, Khovanskii-Pukhikov, and Barvinok that arise in the discrete geometry of polytopes, and what variously known as Prony's method, or Vandermonde factorization of finite rank Hankel matrices.Comment: LaTeX2e, 24 pages including 1 appendi

    Observing planet-disk interaction in debris disks

    Full text link
    Context. Structures in debris disks induced by planetdisk interaction are promising to provide valuable constraints on the existence and properties of embedded planets. Aims. We investigate the observability of structures in debris disks induced by planet-disk interaction. Methods. The observability of debris disks with the Atacama Large Millimeter/submillimeter Array (ALMA) is studied on the basis of a simple analytical disk model. Furthermore, N-body simulations are used to model the spatial dust distribution in debris disks under the influence of planet-disk interaction. Images at optical scattered light to millimeter thermal re-emission are computed. Available information about the expected capabilities of ALMA and the James Webb Space Telescope (JWST) are used to investigate the observability of characteristic disk structures through spatially resolved imaging. Results. Planet-disk interaction can result in prominent structures. This provides the opportunity of detecting and characterizing extrasolar planets in a range of masses and radial distances from the star that is not accessible to other techniques. Facilities that will be available in the near future are shown to provide the capabilities to spatially resolve and characterize structures in debris disks. Limitations are revealed and suggestions for possible instrument setups and observing strategies are given. In particular, ALMA is limited by its sensitivity to surface brightness, which requires a trade-off between sensitivity and spatial resolution. Space-based midinfrared observations will be able to detect and spatially resolve regions in debris disks even at a distance of several tens of AU from the star, where the emission from debris disks in this wavelength range is expected to be low. [Abridged]Comment: 16 pages, 10 figures, accepted by A&
    • …
    corecore