425 research outputs found

    Low Energy Processes Associated with Spontaneously Broken N=2 Supersymmetry

    Get PDF
    We consider low energy processes described by the N=2 supercurrent on its partially (to N=1) and spontaneously broken vacuum and the attendant Nambu-Goldstone fermion (NGF), which the presence of the electric and magnetic Fayet-Iliopoulos (FI) terms is responsible for. We show suppressions of amplitudes decaying into the NGF as its momentum becomes small. In the lagrangian realization (namely, the model of arXiv:hep-th/0409060) of the conserved supercurrent, the NGF resides in the overall U(1), which is nonetheless not decoupled, and interacts with the SU(N) sector through nonderivative as well as derivative couplings. The low energy suppression is instead accomplished by a cancellation between the annihilation diagram from the Yukawa couplings and the contact four-Fermi terms. We give a complete form of the supercurrent and the model is recast in more transparent notation.Comment: 20 pages, 6 figure

    Introducing Dynamical Triangulations to the Type IIB Superstrings

    Get PDF
    In order to consider non-perturbative effects of superstrings, we try to apply dynamical triangulations to the type IIB superstrings. The discretized action is constructed from the type IIB matrix model proposed as a constructive definition of superstring theory. The action has the local N=2 supersymmetry explicitly, and has no extra fermionic degrees of freedom. We evaluate the partition function for some simple configurations and discuss constraints required from the finiteness of partition functions.Comment: LATTICE99, 3 pages, LaTeX with 2 figures, espcrc2.st

    Normalization of Off-shell Boundary State, g-function and Zeta Function Regularization

    Full text link
    We consider the model in two dimensions with boundary quadratic deformation (BQD), which has been discussed in tachyon condensation. The partition function of this model (BQD) on a cylinder is determined, using the method of zeta function regularization. We show that, for closed channel partition function, a subtraction procedure must be introduced in order to reproduce the correct results at conformal points. The boundary entropy (g-function) is determined from the partition function and the off-shell boundary state. We propose and consider a supersymmetric generalization of BQD model, which includes a boundary fermion mass term, and check the validity of the subtraction procedure.Comment: 21 pages, LaTeX, comments and 3 new references adde

    Instanton Correction of Prepotential in Ruijsenaars Model Associated with N=2 SU(2) Seiberg-Witten Theory

    Get PDF
    Instanton correction of prepotential of one-dimensional SL(2) Ruijsenaars model is presented with the help of Picard-Fuchs equation of Pakuliak-Perelomov type. It is shown that the instanton induced prepotential reduces to that of the SU(2) gauge theory coupled with a massive adjoint hypermultiplet.Comment: revtex, 15 pages, to be published in Journal of Mathematical Physic

    Affine Lie Algebras in Massive Field Theory and Form-Factors from Vertex Operators

    Full text link
    We present a new application of affine Lie algebras to massive quantum field theory in 2 dimensions, by investigating the q1q\to 1 limit of the q-deformed affine sl(2)^\hat{sl(2)} symmetry of the sine-Gordon theory, this limit occurring at the free fermion point. Working in radial quantization leads to a quasi-chiral factorization of the space of fields. The conserved charges which generate the affine Lie algebra split into two independent affine algebras on this factorized space, each with level 1 in the anti-periodic sector, and level 00 in the periodic sector. The space of fields in the anti-periodic sector can be organized using level-11 highest weight representations, if one supplements the \slh algebra with the usual local integrals of motion. Introducing a particle-field duality leads to a new way of computing form-factors in radial quantization. Using the integrals of motion, a momentum space bosonization involving vertex operators is formulated. Form-factors are computed as vacuum expectation values in momentum space. (Based on talks given at the Berkeley Strings 93 conference, May 1993, and the III International Conference on Mathematical Physics, String Theory, and Quantum Gravity, Alushta, Ukraine, June 1993.)Comment: 13 pages, CLNS 93/125

    Progress in QCD next-to-leading order calculations

    Get PDF
    I review progress related to the calculation of QCD jet cross sections at the NLO accuracy. After a short introduction into the theory of NLO calculations, I discuss two recent developments: the calculation of two- and three-jet leptoproduction at the NLO accuracy and the extension of the dipole subtraction method for computing NLO corrections for processes involving massive partons.Comment: 5 pages, 4 figures, LaTeX using JHEP3.cls, Invited talk at the International Europhysics Conference on High-Energy Physics (HEP 2001

    The matrix model version of AGT conjecture and CIV-DV prepotential

    Full text link
    Recently exact formulas were provided for partition function of conformal (multi-Penner) beta-ensemble in the Dijkgraaf-Vafa phase, which, if interpreted as Dotsenko-Fateev correlator of screenings and analytically continued in the number of screening insertions, represents generic Virasoro conformal blocks. Actually these formulas describe the lowest terms of the q_a-expansion, where q_a parameterize the shape of the Penner potential, and are exact in the filling numbers N_a. At the same time, the older theory of CIV-DV prepotential, straightforwardly extended to arbitrary beta and to non-polynomial potentials, provides an alternative expansion: in powers of N_a and exact in q_a. We check that the two expansions coincide in the overlapping region, i.e. for the lowest terms of expansions in both q_a and N_a. This coincidence is somewhat non-trivial, since the two methods use different integration contours: integrals in one case are of the B-function (Euler-Selberg) type, while in the other case they are Gaussian integrals.Comment: 27 pages, 1 figur

    Constant mean curvature surfaces in AdS_3

    Get PDF
    We construct constant mean curvature surfaces of the general finite-gap type in AdS_3. The special case with zero mean curvature gives minimal surfaces relevant for the study of Wilson loops and gluon scattering amplitudes in N=4 super Yang-Mills. We also analyze properties of the finite-gap solutions including asymptotic behavior and the degenerate (soliton) limit, and discuss possible solutions with null boundaries.Comment: 19 pages, v2: minor corrections, to appear in JHE

    On the property of Cachazo-Intriligator-Vafa prepotential at the extremum of the superpotential

    Get PDF
    We consider CIV-DV prepotential F for N=1 SU(n) SYM theory at the extremum of the effective superpotential and prove the relation 2FSdF/dS=2u2Lambda2n/(n21)2F-S dF/dS = - 2 u_2 Lambda^2n /(n^2-1)Comment: LaTeX, 10 pages; v2: some misprints corrected; v3: submitted to Phys.Rev.

    Special colored Superpolynomials and their representation-dependence

    Full text link
    We introduce the notion of "special superpolynomials" by putting q=1 in the formulas for reduced superpolynomials. In this way we obtain a generalization of special HOMFLY polynomials depending on one extra parameter t. Special HOMFLY are known to depend on representation R in especially simple way: as |R|-th power of the fundamental ones. We show that the same dependence persists for our special superpolynomials in the case of symmetric representations, at least for the 2-strand torus and figure-eight knots. For antisymmetric representations the same is true, but for t=1 and arbitrary q. It would be interesting to find an interpolation between these two relations for arbitrary representations, but no superpolynomails are yet available in this case.Comment: 5 page
    corecore