582 research outputs found

    Case Study of Decoherence Times of Transmon Qubit

    Full text link
    In the past two decades, one of the fascinating subjects in quantum physics has been quantum bits (qubits). Thanks to the superposition principle, the qubits can perform many calculations simultaneously, which will significantly increase the speed and capacity of the calculations. The time when a qubit lives in an excited state is called decoherence time. The decoherence time varies considerably depending on the qubit type and materials. Today, short decoherence times are one of the bottlenecks in implementing quantum computers based on superconducting qubits. In this research, the topology of the transmon qubit is investigated, and the decoherence time caused by noise, flux, and critical current noise is calculated by numerical method.Comment: 7 pages, 5 figure

    Relationship among sera lipoprotein abnormalities in healthy individuals with background of diabetic sibling

    Get PDF
    As the prevalence of lipoprotein abnormalities in adolescents is increasing dramatically, the identification of relevant risk factors is a major public health challenge. The aim of this study was to investigate whether a family history of diabetes could be a risk factor for lipid abnormalities in healthy individuals. This study is a cross-sectional case control study. 179 men and women were studied in two equal-member groups (with diabetic parents' background and without any diabetic sibling). Both groups matched in body mass index (BMI), age and sex. The serum concentration of oxidized-low density lipoprotein (LDL), Apo B100 and insulin were measured by enzyme linked immunosorbant assay technique and TG, Chol, HDL-C, FBS and GTT by enzymatic methods. The LDL-C level was calculated using the Friedewald formula. The results show that there were no significant variation in the amount of plasma FBS, GTT, Cho, TG, LDL and HDL between the two groups, whereas a significant increase was found in the amount of insulin (P = 0.02), Apo B100 (P = 0.001), OX-LDL (P = 0.001) and HOMA-IR (P = 0.03) in the case group as compared to the control group. We conclude that a family history of diabetic parents can lead to lipid parameters abnormalities and CVD risk factor via aggregation of inherited defected genes.Key words: Diabetes, oxidized-low density lipoprotein (LDL), Apo B100, lipoproteins

    Optical properties of BaFe2x_{2-x}Cox_xAs2_2

    Get PDF
    We present detailed temperature dependent optical data on BaFe2x_{2-x}Cox_{x}As2_{2} (BCFA), with x = 0.14, between 4 meV and 6.5 eV. We analyze our spectra to determine the main optical parameters and show that in this material the interband conductivity already starts around 10 meV. We determine the superfluid density to be 2.2 10^{7}cm2,whichplacesoptimallydopedBFCAclosetotheUemuraline.Ourexperimentaldatashowsclearsignsofasuperconductinggapwith2 cm^{-2}, which places optimally doped BFCA close to the Uemura line. Our experimental data shows clear signs of a superconducting gap with 2\Delta_{1}=6.2 = 6.2 \pm0.8meV.Inadditionweshowthattheopticalspectraareconsistentwiththepresenceofanadditionalbandofstronglyscatteredcarrierswithalargergap,2 0.8 meV. In addition we show that the optical spectra are consistent with the presence of an additional band of strongly scattered carriers with a larger gap, 2\Delta_{2}=14 = 14 \pm$ 2 meV.Comment: 5 pages, 4 figure

    Rules Governing Selective Protein Carbonylation

    Get PDF
    BACKGROUND:Carbonyl derivatives are mainly formed by direct metal-catalysed oxidation (MCO) attacks on the amino-acid side chains of proline, arginine, lysine and threonine residues. For reasons unknown, only some proteins are prone to carbonylation. METHODOLOGY/PRINCIPAL FINDINGS:we used mass spectrometry analysis to identify carbonylated sites in: BSA that had undergone in vitro MCO, and 23 carbonylated proteins in Escherichia coli. The presence of a carbonylated site rendered the neighbouring carbonylatable site more prone to carbonylation. Most carbonylated sites were present within hot spots of carbonylation. These observations led us to suggest rules for identifying sites more prone to carbonylation. We used these rules to design an in silico model (available at http://www.lcb.cnrs-mrs.fr/CSPD/), allowing an effective and accurate prediction of sites and of proteins more prone to carbonylation in the E. coli proteome. CONCLUSIONS/SIGNIFICANCE:We observed that proteins evolve to either selectively maintain or lose predicted hot spots of carbonylation depending on their biological function. As our predictive model also allows efficient detection of carbonylated proteins in Bacillus subtilis, we believe that our model may be extended to direct MCO attacks in all organisms

    Evidence for a Fermi liquid in the pseudogap phase of high-Tc cuprates

    Full text link
    Cuprate high-T_c superconductors on the Mott-insulating side of "optimal doping" (with respect to the highest T_c's) exhibit enigmatic behavior in the non-superconducting state. Near optimal doping the transport and spectroscopic properties are unlike those of a Landau-Fermi liquid. For carrier concentrations below optimal doping a pseudogap removes quasi-particle spectral weight from parts of the Fermi surface, and causes a break-up of the Fermi surface into disconnected nodal and anti-nodal sectors. Here we show that the near-nodal excitations of underdoped cuprates obey Fermi liquid behavior. Our optical measurements reveal that the dynamical relaxation rate 1/tau(omega,T) collapses on a universal function proportional to (hbar omega)^2+(1.5 pi k_B T)^2. Hints at possible Fermi liquid behavior came from the recent discovery of quantum oscillations at low temperature and high magnetic field in underdoped YBa2Cu3O6+d and YBa2Cu4O8, from the observed T^2-dependence of the DC ({\omega}=0) resistivity for both overdoped and underdoped cuprates, and from the two-fluid analysis of nuclear magnetic resonance data. However, the direct spectroscopic determination of the energy dependence of the life-time of the excitations -provided by our measurements- has been elusive up to now. This observation defies the standard lore of non-Fermi liquid physics in high T_c cuprates on the underdoped side of the phase diagram.Comment: 15 pages, 11 figure

    Guiding principles on the education and practice of theranostics.

    Get PDF
    The recent development and approval of new diagnostic imaging and therapy approaches in the field of theranostics have revolutionised nuclear medicine practice. To ensure the provision of these new imaging and therapy approaches in a safe and high-quality manner, training of nuclear medicine physicians and qualified specialists is paramount. This is required for trainees who are learning theranostics practice, and for ensuring minimum standards for knowledge and competency in existing practising specialists. To address the need for a training curriculum in theranostics that would be utilised at a global level, a Consultancy Meeting was held at the IAEA in May 2023, with participation by experts in radiopharmaceutical therapy and theranostics including representatives of major international organisations relevant to theranostics practice. Through extensive discussions and review of existing curriculum and guidelines, a harmonised training program for theranostics was developed, which aims to ensure safe and high quality theranostics practice in all countries. The guiding principles for theranostics training outlined in this paper have immediate relevance for the safe and effective practice of theranostics

    Molecular identification and phylogenetic classification of Leishmania spp. isolated from human cutaneous leishmaniasis in Iran: A cross-sectional study

    Get PDF
    Background: In Iran, both forms of cutaneous (CL) and visceral leishmaniasis (VL) have been reported; so the accurate species identification of the parasite(s) and the analysis of genetic diversity are necessary. Methods: The smears were collected from lesions samples of 654 patients with CL, who attended local health centers in 12 provinces of Iran during 2013-2015. The smears were checked for the presence of amastigotes by light microscopy. DNA of 648 Leishmania isolates, amplified by targeting a partial sequence of ITS (18S rRNA�ITS1�5.8S rRNA�ITS2) gene. Twenty-five of all the amplicons were sequenced and analyzed with restriction fragment length polymorphism (RFLP) using the Taq1 enzyme. Results: All the smears were positive microscopically. The PCR-RFLP analysis revealed that 176 (27) CL patients were infected with L. tropica and, 478 (73) with L. major. The dominant species in all over Iran is L. major. The sequencing results of all CL patients and RFLP analysis confirmed each other. Based on our phylogenetic tree, 25 ITS DNA sequences were grouped into two clusters representing L. major and L. tropica species. Phylogenetic tree derived from the ITS sequences supports a clear divergence between L. major from the other species. Conclusion: Discrimination of Iranian Leishmania isolates using ITS gene gives us this opportunity to detect, identify, and construct the phylogenetic relationship of Iranian isolates. © 2018, Tehran University of Medical Sciences (TUMS). All rights reserved

    Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000–18: a geospatial modelling study

    Get PDF
    Background: More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels. Methods: We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km × 5 km resolution in 98 LMICs based on 2·1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution. Findings: Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205 000 (95% uncertainty interval 147 000–257 000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution. Interpretation: Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Funding: Bill & Melinda Gates Foundation
    corecore