499 research outputs found

    On errors-in-variables estimation with unknown noise variance ratio

    No full text
    We propose an estimation method for an errors-in-variables model with unknown input and output noise variances. The main assumption that allows identifiability of the model is clustering of the data into two clusters that are distinct in a certain specified sense. We show an application of the proposed method for system identification

    On weighted structured total least squares

    No full text
    In this contribution we extend the result of (Markovsky et. al, SIAM J. of Matrix Anal. and Appl., 2005) to the case of weighted cost function. It is shown that the computational complexity of the proposed algorithm is preserved linear in the sample size when the weight matrix is banded with bandwidth that is independent of the sample size

    Multimodal imaging of human brain activity: rational, biophysical aspects and modes of integration

    Get PDF
    Until relatively recently the vast majority of imaging and electrophysiological studies of human brain activity have relied on single-modality measurements usually correlated with readily observable or experimentally modified behavioural or brain state patterns. Multi-modal imaging is the concept of bringing together observations or measurements from different instruments. We discuss the aims of multi-modal imaging and the ways in which it can be accomplished using representative applications. Given the importance of haemodynamic and electrophysiological signals in current multi-modal imaging applications, we also review some of the basic physiology relevant to understanding their relationship

    Effect of the Heart Rate Variability Representations on the Quantification of the Cardiorespiratory Interactions during Autonomic Nervous System Blockade

    Get PDF
    The Heart Rate Variability (HRV) is a noninvasive tool to evaluate the activity of the autonomic nervous system. To study the HRV, different mathematical representations can be used. The selection of a representation might have an effect on the evaluation of the mechanisms that modulate the Heart Rate (HR). One of these mechanisms is the Respiratory Sinus Arrhythmia (RSA), i.e. an increased HR during inhalation and a decreased HR during exhalation. Different methods exist to quantify the RSA. A common approach is to calculate the power in the High Frequency (HF, 0.15 - 0.4 Hz) band of the spectrum of the HRV representation. More recently proposed methods use the respiratory signals to estimate the strength of the RSA.This paper studies the effect of the HRV representations on the quantification of the RSA. To this end, an experiment is used in which the sympathetic and parasympathetic branches of the autonomic nervous system are selectively blocked. Three different HRV representations are considered. Afterwards, the strength of the RSA is estimated using three approaches, namely the spectral content in the HF band of the HRV representations, orthogonal subspace projections and a time-frequency representation.The results suggest that the selection of an HRV representation does not have a significant impact on the RSA estimates in a healthy population

    Medición de la autorregulación cerebral derivada de la espectroscopia de infrarrojo cercano en recién nacidos: de la herramienta de investigación al monitoreo multimodal junto a la cama

    Get PDF
    Cerebral autoregulation (CAR), the ability of the human body to maintain cerebral blood flow (CBF) in a wide range of perfusion pressures, can be calculated by describing the relation between arterial blood pressure (ABP) and cerebral oxygen saturation measured by near-infrared spectroscopy (NIRS). In literature, disturbed CAR is described in different patient groups, using multiple measurement techniques and mathematical models. Furthermore, it is unclear to what extent cerebral pathology and outcome can be explained by impaired CAR
    corecore