583 research outputs found

    Dynamical Evolution in Noncommutative Discrete Phase Space and the Derivation of Classical Kinetic Equations

    Full text link
    By considering a lattice model of extended phase space, and using techniques of noncommutative differential geometry, we are led to: (a) the conception of vector fields as generators of motion and transition probability distributions on the lattice; (b) the emergence of the time direction on the basis of the encoding of probabilities in the lattice structure; (c) the general prescription for the observables' evolution in analogy with classical dynamics. We show that, in the limit of a continuous description, these results lead to the time evolution of observables in terms of (the adjoint of) generalized Fokker-Planck equations having: (1) a diffusion coefficient given by the limit of the correlation matrix of the lattice coordinates with respect to the probability distribution associated with the generator of motion; (2) a drift term given by the microscopic average of the dynamical equations in the present context. These results are applied to 1D and 2D problems. Specifically, we derive: (I) The equations of diffusion, Smoluchowski and Fokker-Planck in velocity space, thus indicating the way random walk models are incorporated in the present context; (II) Kramers' equation, by further assuming that, motion is deterministic in coordinate spaceComment: LaTeX2e, 40 pages, 1 Postscript figure, uses package epsfi

    Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans

    Get PDF
    Acidification of airborne dust particles can dramatically increase the amount of bioavailable phosphorus (P) deposited on the surface ocean. Experiments were conducted to simulate atmospheric processes and determine the dissolution behaviour of phosphorus compounds in dust and dust precursors oils. Acid dissolution occurs rapidly (seconds to minutes) and is controlled by the amount of H + ions present. For H + 10-4 mol per gram of dust, the amount of phosphorus (and Ca) released follows a power law dependent on the amount of H + consumed until all inorganic phosphorus minerals are exhausted and the final pH remains acidic. Once dissolved, phosphorus will stay in solution due to slow precipitation kinetics. Dissolution of apatite-P, the major mineral phase in dust (79-96%), occurs whether CaCO 3 is present or not, though the increase in dissolved phosphorus is greater if CaCO 3 is absent or if the particles are externally mixed. The system was modelled adequately as a simple mixture of apatite-P and calcite. Phosphorus dissolves readily by acid processes in the atmosphere in contrast to iron, which dissolves slower and is subject to re-precipitation at cloud water pH. We show that acidification can increase bioavailable phosphorus deposition over large areas of the globe, and may explain much of the previously observed patterns of variability in leachable phosphorus in oceanic areas where primary productivity is limited by this nutrient (e.g. Mediterranean)

    The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation

    Get PDF
    We give a theoretical analysis of published experimental studies of the effects of impurities and disorder on the superconducting transition temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X (where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3). The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by magnetic impurities in singlet superconductors, including s-wave superconductors and by non-magnetic impurities in a non-s-wave superconductor. We show that various sources of disorder lead to the suppression of T_c as described by the AG formula. This is confirmed by the excellent fit to the data, the fact that these materials are in the clean limit and the excellent agreement between the value of the interlayer hopping integral, t_perp, calculated from this fit and the value of t_perp found from angular-dependant magnetoresistance and quantum oscillation experiments. If the disorder is, as seems most likely, non-magnetic then the pairing state cannot be s-wave. We show that the cooling rate dependence of the magnetisation is inconsistent with paramagnetic impurities. Triplet pairing is ruled out by several experiments. If the disorder is non-magnetic then this implies that l>=2, in which case Occam's razor suggests that d-wave pairing is realised. Given the proximity of these materials to an antiferromagnetic Mott transition, it is possible that the disorder leads to the formation of local magnetic moments via some novel mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave superconductors or else they display a novel mechanism for the formation of localised moments. We suggest systematic experiments to differentiate between these scenarios.Comment: 18 pages, 5 figure

    Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays

    Full text link
    Quantum processors based on integrated nanoscale silicon spin qubits are a promising platform for highly scalable quantum computation. Current CMOS spin qubit processors consist of dense gate arrays to define the quantum dots, making them susceptible to crosstalk from capacitive coupling between a dot and its neighbouring gates. Small but sizeable spin-orbit interactions can transfer this electrostatic crosstalk to the spin g-factors, creating a dependence of the Larmor frequency on the electric field created by gate electrodes positioned even tens of nanometers apart. By studying the Stark shift from tens of spin qubits measured in nine different CMOS devices, we developed a theoretical frawework that explains how electric fields couple to the spin of the electrons in increasingly complex arrays, including those electric fluctuations that limit qubit dephasing times T2∗T_2^*. The results will aid in the design of robust strategies to scale CMOS quantum technology.Comment: 9 pages, 4 figure

    Design considerations for workflow management systems use in production genomics research and the clinic

    Get PDF
    Abstract The changing landscape of genomics research and clinical practice has created a need for computational pipelines capable of efficiently orchestrating complex analysis stages while handling large volumes of data across heterogeneous computational environments. Workflow Management Systems (WfMSs) are the software components employed to fill this gap. This work provides an approach and systematic evaluation of key features of popular bioinformatics WfMSs in use today: Nextflow, CWL, and WDL and some of their executors, along with Swift/T, a workflow manager commonly used in high-scale physics applications. We employed two use cases: a variant-calling genomic pipeline and a scalability-testing framework, where both were run locally, on an HPC cluster, and in the cloud. This allowed for evaluation of those four WfMSs in terms of language expressiveness, modularity, scalability, robustness, reproducibility, interoperability, ease of development, along with adoption and usage in research labs and healthcare settings. This article is trying to answer, which WfMS should be chosen for a given bioinformatics application regardless of analysis type?. The choice of a given WfMS is a function of both its intrinsic language and engine features. Within bioinformatics, where analysts are a mix of dry and wet lab scientists, the choice is also governed by collaborations and adoption within large consortia and technical support provided by the WfMS team/community. As the community and its needs continue to evolve along with computational infrastructure, WfMSs will also evolve, especially those with permissive licenses that allow commercial use. In much the same way as the dataflow paradigm and containerization are now well understood to be very useful in bioinformatics applications, we will continue to see innovations of tools and utilities for other purposes, like big data technologies, interoperability, and provenance

    Bounds to electron spin qubit variability for scalable CMOS architectures

    Full text link
    Spins of electrons in CMOS quantum dots combine exquisite quantum properties and scalable fabrication. In the age of quantum technology, however, the metrics that crowned Si/SiO2 as the microelectronics standard need to be reassessed with respect to their impact upon qubit performance. We chart the spin qubit variability due to the unavoidable atomic-scale roughness of the Si/SiO2_2 interface, compiling experiments in 12 devices, and developing theoretical tools to analyse these results. Atomistic tight binding and path integral Monte Carlo methods are adapted for describing fluctuations in devices with millions of atoms by directly analysing their wavefunctions and electron paths instead of their energy spectra. We correlate the effect of roughness with the variability in qubit position, deformation, valley splitting, valley phase, spin-orbit coupling and exchange coupling. These variabilities are found to be bounded and lie within the tolerances for scalable architectures for quantum computing as long as robust control methods are incorporated.Comment: 20 pages, 8 figure

    Crop Updates 2001 - Grower Booklet

    Get PDF
    1. Strategies for leaf disease management in wheat, Jatinderpal Bhathal1, Cameron Weeks2, Kith Jayasena1 and Robert Loughman1, 1Agriculture Western Australia. 2Mingenew-Irwin Group Inc. 2. Burn stubble windrows: to diagnose soil fertility problems, Bill Bowden, Chris Gazey and Ross Brennan, Agriculture Western Australia 3. Rainfall – what happened in 2000 and the prospects for 2001, Ian Foster, Agriculture Western Australia 4. Strategies for leaf disease management in malting barley, K. Jayasena1, Q. Knight2 and R. Loughman1, 1Agriculture Western Australia, 2IAMA Agribusiness 5. Planning your cropping program in season 2001, Dr Ross Kingwell, Agriculture Western Australia and University of Western Australia 6. Rotational crops and varieties for management of root lesion nematodes in Western Australia, S.B. Sharma, S. Kelly and R. Loughman, Crop Improvement Institute, Agriculture Western Australia 7. When and where to grow oats, Glenn McDonald, Agriculture Western Australia 8. Managing Gairdner barley for quality, Kevin Young and Blakely Paynter, Agriculture Western Australia FARMING SYSTEMS, PASTURES AND WEEDS 9.Evaluation of pasture species for phase pasture systems, Keith Devenish, Agriculture Western Australia 10. Competitiveness of wild radish in a wheat – lupin rotation, Abul Hashem, Nerys Wilkins, and Terry Piper, Agriculture Western Australia 11. Can we eradicate barley grass? Sally Peltzer, Agriculture Western Australia 12. Short term pasture phase for weed control, Clinton Revell and Candy Hudson, Agriculture Western Australia 13. Herbicide tolerance of some annual pasture legumes adapted to coarse textured sandy soils, Clinton Revell and Ian Rose, Agriculture Western Australia 14. Integrated weed management: Cadoux, Alexandra Wallace, Agriculture Western Australia LUPINS 15. Inter-row knockdowns for profitable lupins, Paul Blackwell, Agriculture Western Australia and Miles Obst, farmer, Mingenew 16.. Wild radish – the implications for our rotations, Dr David Bowran, Centre for Cropping Systems 17. Lupin variety performance: Are you making the most of it? Bevan J. Buirchell, Senior Plant Breeder, Agriculture Western Australia 18. Anthracnose in lupins – understanding the risk, Moin Salam, Art Diggle, Geoff Thomas, Mark Sweetingham and Bill O’Neill, Agriculture Western Australia OILSEEDS 19. Effect of stubble, seeding technique and seed size on crop establishment and yield of canola, Rafiul Alam, Glen Riethmuller and Greg Hamilton, Agriculture Western Australia 20. Canola – More responses to lime, Chris Gazey and Paul Carmody,Agriculture Western Australia 22. Performance of new canola varieties in AGWEST variety trials in 2000, G. Walton, Crop Improvement Institute, Agriculture Western Australia PULSES 23. The ascochyta management package for 2001, B. MacLeod, Agriculture Western Australia 24. Herbicide tolerance of new field pea varieties and lines, M. Seymour, H. Dhammu, T. Piper, D. Nicholson, M. D\u27Antuono, Agriculture Western Australi
    • …
    corecore