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Design considerations for workflow 
management systems use 
in production genomics research 
and the clinic
Azza E. Ahmed1,2,11*, Joshua M. Allen3, Tajesvi Bhat3,4,5, Prakruthi Burra3,4,12, 
Christina E. Fliege3, Steven N. Hart6, Jacob R. Heldenbrand3, Matthew E. Hudson3,7, 
Dave Deandre Istanto7, Michael T. Kalmbach8, Gregory D. Kapraun8, Katherine I. Kendig3, 
Matthew Charles Kendzior3,8, Eric W. Klee6, Nate Mattson8, Christian A. Ross9, 
Sami M. Sharif2, Ramshankar Venkatakrishnan3, Faisal M. Fadlelmola1,13 & 
Liudmila S. Mainzer3,10,13

The changing landscape of genomics research and clinical practice has created a need for 
computational pipelines capable of efficiently orchestrating complex analysis stages while handling 
large volumes of data across heterogeneous computational environments. Workflow Management 
Systems (WfMSs) are the software components employed to fill this gap. This work provides an 
approach and systematic evaluation of key features of popular bioinformatics WfMSs in use today: 
Nextflow, CWL, and WDL and some of their executors, along with Swift/T, a workflow manager 
commonly used in high-scale physics applications. We employed two use cases: a variant-calling 
genomic pipeline and a scalability-testing framework, where both were run locally, on an HPC cluster, 
and in the cloud. This allowed for evaluation of those four WfMSs in terms of language expressiveness, 
modularity, scalability, robustness, reproducibility, interoperability, ease of development, along with 
adoption and usage in research labs and healthcare settings. This article is trying to answer, which 
WfMS should be chosen for a given bioinformatics application regardless of analysis type?. The choice 
of a given WfMS is a function of both its intrinsic language and engine features. Within bioinformatics, 
where analysts are a mix of dry and wet lab scientists, the choice is also governed by collaborations 
and adoption within large consortia and technical support provided by the WfMS team/community. 
As the community and its needs continue to evolve along with computational infrastructure, WfMSs 
will also evolve, especially those with permissive licenses that allow commercial use. In much the 
same way as the dataflow paradigm and containerization are now well understood to be very useful 
in bioinformatics applications, we will continue to see innovations of tools and utilities for other 
purposes, like big data technologies, interoperability, and provenance.
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Today’s era of data intensive science is introducing drastic changes to the scientific method1,2. Genomics has 
turned into a large-scale data generation science on par with astronomy and physics3,4. With this comes a shift 
in computational environments from local High Performance Computing (HPC) facilities, to distributed grids, 
and more recently cloud resources, especially within large-scale multi-center collaborative projects5. Likewise, 
the pressure to process the ever-increasing amount of data at an ever-increasing pace is driving the evolution of 
software to automate and parallelize analyses in these HPC environments6.

Scientific Workflow Management Systems (WfMSs) automate computational analyses by stringing together 
individual data processing tasks into cohesive pipelines7,8. They abstract away the issues of orchestrating 
data movement and processing, managing task dependencies, and allocating resources within the compute 
infrastructure9. Additionally, some WfMSs provide mechanisms to track data provenance, execution errors, user 
authentication, and data security (Fig. 1). The rise of WfMSs in modern science has prompted the creation of 
new standards in the form of Findable, Accessible, Interoperable and Reproducible principles for tools, work-
flows, and dataset sharing protocols10. These criteria now drive the evolution of containerized software11,12 and 
standard Application Programming Interface (API)s for defining, sharing, and executing code across a range of 
computational environments13.

Given that so many groups are implementing and using WfMSs14,15, we present a systematic, quantitative 
evaluation and comparison of their capabilities, focusing on deployment and management of analyses that 
require complex workflow architecture involving loops, conditional execution, and nestedness. Unlike prior 
reviews (e.g.,16), we will focus on the management of very large analyses across dozens to hundreds of nodes, 
under circumstances where human interaction would be a significant interruption. These kinds of analyses are 
performed in large sequencing facilities, major research hospitals, and the agricultural sector.

We identified the following aspects of WfMSs relevant to bioinformatics: (1) modularity of the pipeline to 
enable checkpointing; (2) scalability with respect to the number of tasks in the pipeline and the number of nodes 
utilized per run; (3) robustness against failures due to data issues, resource unavailability, or aborted execu-
tion; (4) reproducibility via logs recording data provenance and task execution; (5) portability across compute 
environments; (6) interoperability of metadata and representation enabling workflow registration in common 
repositories, language standardization, and ability to translate the same workflow into several programming 
languages; and (7) ease of development by users with a range of experience and computational knowledge. We 
evaluate these aspects both for the purposes of research analyses and their use in clinical settings, requiring data 
privacy, governance and strict validation of correctness. The results drive our recommendations for using differ-
ent WfMSs in those settings, and ideas for the future of workflows in biological computing.

Results
Philosophy and main purpose of the chosen WfMSs.  The usability, features and performance of a 
WfMS are driven by the purpose for which it has been developed. The Common Workflow Languagen (CWL) 
is a language specification designed by the bioinformatics community to unify the style, principles and stand-
ards of coding pipelines, in a way that is agnostic of the hardware. It prioritizes reproducibility and portability 
of workflows and hence requires explicit/pedantic parameters definitions, making it very verbose. In contrast, 
Workflow Description Language (WDL) is a language specification that emphasizes human readability of the 
code and an easy learning curve, at the cost of being restrictive in its expressiveness (fig Supplementary 4). Nex-
tflow is a complete system that combines the workflow language and execution engine, and is perhaps one of the 
most mature WfMSs to-date. Desirable features, such as readability, compactness, portability and provenance 
tracking are available, yet coding is very straightforward, even for a relative beginner in biological computing. 
Similarly, Swift/T is a complete system: Swift, the parallel scripting language, is powered by turbine, the 
execution engine. It was written by physicists and engineers to emphasize scalable deployment of short, rapid-

Figure 1.   A WfMS is middleware between the analyst and the computational environment. It encompasses the 
workflow language specifications to interconnect the analysis executables, and the execution engine to dispatch 
tasks and manage dependencies on the compute infrastructure.
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fire tasks at exascale. It is thus a fairly low-level language (similar to C) and extremely powerful, but has a steep 
learning curve17. Below we explore the impact of these different philosophies on the practicalities of using the 
four WfMSs in production bioinformatics.

Language expressiveness.  Workflow languages are Domain Specific Languages (DSLs) designed to 
express the architectures of workflows. A complete DSL provides the ability to express any workflow pattern18 via 
a rich library of functions, or the means to write custom functions. These abilities, as well as the look and feel of 
a workflow language, is a function of its parent language (Table 1). Swift/T inherits the flexibility and versatility 
of C, incorporating all the familiar functions and ability to write custom functions, and drawing from a wide 
array of pre-existing libraries, including those written in Tcl, the parent language of turbine. Swift/T reads 
like a low-level language, which can be difficult for a novice programmer, but provides unparalleled ability to 
express any complicated workflow logic and embed any advanced algorithm or operation. The Groovy-based 
Nextflow is similarly powerful, though easier to work with, providing the object-oriented look and feel of Java 
and access to any library written for JVM. Example implementations of complex patterns, such as upstream 
process synchronization, exclusive choice among downstream processes, and feedback loops, are available in the 
documentation19. Like Swift/T, Nextflow treats functions as first class objects20 that can be used in the same ways 
as variables, enabling the programmer to create easily extensible pipelines, which is a very important feature in 
the world of ever-changing bioinformatics analyses.

CWL and WDL are qualitatively different. They are better viewed as language specifications with strictly 
defined grammar. Parsers built in other languages, such as Java or Python, interpret this grammar. Thus, CWL 
and WDL are more restrictive in their expressiveness, but more readable and easier to use. CWL has no func-
tions, but supports Javascript code blocks to express complex code patterns, provided the InlineJavas-
criptRequirement is specified in the script document. However, the CWL team does not consider these 
code blocks a good coding practice and advises against overusing them21–23. Worse yet, conditionals were not 
directly supported in CWL until version 1.2.0 released in August 2020, after much discussion in the community24. 
Likewise, WDL does not permit programmers to define custom functions and has a very limited library of basic 
operations. Furthermore, both languages evolve independently of execution engines, which sometimes fail to 
provide support for certain features. For example, until March 2020, nesting conditionals within loops was 
not supported with toil-wdl-runner25, nor are the nested loops in WDL draft-2 code executable by 
Cromwell26 (see Table 2), even though WDL specification does not forbid these patterns. Counterintuitively, 
this makes CWL and WDL particularly well suited for describing biological analysis workflows, by focusing on 
declarative syntax where each step of the workflow appears clearly in the script. Their expressiveness limitations 
have been purposefully imposed to enforce good coding practices and prevent unnecessarily complex workflows 
that cannot be unambiguously resolved. Despite these advantages, experienced coders may find CWL and WDL 
somewhat claustrophobic.

Support for modularity.  Modularity is a very important design principle for production bioinformatics 
workflows. The core idea is to build a library of reusable modules (tasks or subworkflows) and assemble them 
into various master workflows (Fig. 2). This enables (1) performing different analyses without having to refactor 
the entire workflow; (2) check-pointing and restart of a workflow run from a task in the middle of analysis if 
needed; and (3) customizing runtime environments and compute resources which may vary between analysis 
stages.

The superior expressiveness and extensibility of Swift/T make it trivial to implement modularity via user func-
tions, library imports, or leaf functions wrapping scripts written in other languages. Out of the four WfMSs we 
are comparing, Swift/T is the most permissive, at the cost of not having an explicit notion of a workflow. Nextflow 
is similar, but not quite as permissive as Swift/T, where it defines processes to wrap user’s scripts written in 
other languages and considers a workflow to be a series of those process definitions. Nextflow lacked the 
ability to import and reuse processes, until recently with Nextflow DSL-2. WDL has the most intuitive modular 

Table 1.   Summary of language-level differences among Swift/T, Nextflow, CWL and WDL.

Aspect Swift/T Nextflow CWL WDL

Parent language C, tcl Ruby and Groovy N/A N/A

Compilation Compiled Interpreted Compiled Compiled

GUIs – NextflowWorkbench27, 
DolphinNext28 Rabix composer Pipeline Builder29

DSL features Complete, extensible in tcl complete, extensible in Groovy 
and Java

Limited standard library, extensible 
via javascript Limited standard library

Variables Typed, unique within scope Qualified, unique within scope Typed, unique identifiers Typed, fully qualified names

Loops Sequential for and parallel 
foreach Parallel queue channels Parallel scatter via Scatter-

FeatureRequirement Parallel scatter

Conditionals If-else and no-fall through 
switch statements

Via when declaration within a 
process

When and pickValue fields 
proposed in CWLv1.2

If blocks producing optional output 
types

Enforcing good practices – nf-core (https://​nf-​co.​re/) CWL guide (https://​www.​commo​
nwl.​org/​user_​guide/​rec-​pract​ices/) –

https://nf-co.re/
https://www.commonwl.org/user_guide/rec-practices/
https://www.commonwl.org/user_guide/rec-practices/
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workflow scripting, as it explicitly defines tasks wraping Bash commands or Python code, and workflows 
composed of calls to those tasks. This mechanism makes implementing modular workflows matching to the 
everyday logic of a bioinformatics analyst. The resultant WDL master workflows contain subworkflows, which 
consist of tasks, that in turn call Bash code and third-party executables30. They are very easy to write and read, 
and are therefore highly extensible and maintainable. In contrast, this readability aspect cannot be said of CWL. 
It defines CommandLineTool and Workflow classes to distinguish individual command-line invocations 
from the workflow logic calling them. Workflows can be nested by treating subworkflows similarly to Comman-
dLineTools, so long as the SubworkflowFeatureRequirement:  is added into the header. Thus, in 
principle, a CWL workflow is extensible and modular by the design of the language. Unfortunately, the code ends 
up being extremely verbose (Fig Supplementary 4), and takes a lot longer to develop than the other three WfMSs.

We conclude that all four evaluated languages deliver satisfactory support for modularity at the code level, 
though ease of use remains in the eyes of the programmer. Use of modularity for custom resource allocation, 
check-pointing and auto-restart from the point of failure, is the executor’s job, and (“Job execution: resources 
provision” and “Robustness” sections).

Figure 2.   Bioinformatics workflows with multiple levels of complexity warrant a modular construction. It 
is easiest to program the workflow when its logic is abstracted away (in Tasks, red) from the command line 
invocations (in Bash scripts, pink) of the bioinformatics tools (light pink). Individual workflows can be further 
used as subworkflows of a larger Master workflow (e.g., Fig Supplementary 1). This architecture facilitates 
expression of additional complexity due to optional modules (dashed line), nested levels of parallelism (groups 
of arrows connecting red rectangles) and scatter-gather patterns (task 2 scattered across samples being merged 
into task 3).

Table 2.   Summary of executor-level differences among Swift/T, Nextflow, CWL and WDL. Any given feature 
of a workflow language can be assumed supported by the executor, unless we note otherwise. Supported 
language versions are in parentheses for each executor. Italics indicates engines we thoroughly examined. 
† These are listed as production-ready engines in the official CWL website in July 2021. The rest are listed as 
partial implementations.

WfMS

RemarksLanguage Execution engine

Swift/T
Complete WfMS, supporting conditionals, loops and nested logic

Nextflow (DSL-1, DSL-2)

CWL

cwltool† The official reference implementation of an execution engine for the complete CWL standard33; no cluster or 
cloud support

arvados†(1.0, 1.1, 1.2) Most feature-rich CWL runner, albiet with tedious setup

toil-cwl-runner†(1.0.1) Optimized for cloud environments, less stable in batch environments (Section Scalability)

cwl airflow†(1.1) Works with celery and Kubernetes clusters, not readily with HPC CRMs

REANA†(Documentation missing) Cloud-optimized platform. For HPC, only CERN Slurm and HTcondor are supported

Cromwell (1.0) Supports CWL workflows via WOM, with comparable performance in both languages (Section Scalability)

cwl-tes (1.0) Partial implementation at present, with tedious setup. GA4GH TES API compatible

rabix executor (sbg:draft-2, 1.0) Single node local executor is no longer supported by the original developer team at Seven Bridges

WDL

Cromwell (draft-2, 1.0) De facto standard for executing WDL workflows. Support for nested loops is version-dependent

toil-wdl-runner (draft-2) No support for modularity or nesting of loops and conditionals. Support for batch systems is also rudimentary

miniWDL (draft-2, 1.0) No cluster or cloud support. Includes Cromwell wrapper
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Data dependencies and parallelism.  In the dataflow paradigm31, data dependency and parallelism go 
hand in hand. Blocks of code that do not have data dependencies among them are executed in parallel (implicit 
parallelism), e.g., quality checks on a BAM file. A different mechanism is usually implemented for code blocks 
meant to run in parallel (explicit parallelism), e.g., read alignment across multiple lanes (Fig Supplementary 1). 
The four languages studied here differ in handling the switching between the implicitly parallel and the explicitly 
serial phases of an analysis (Fig Supplementary 4).

Swift/T employs foreach and for statements for parallel and sequential iteration over array elements, 
respectively. The => or wait statements enforce serial execution of tasks where explicit data dependency is 
missing, as Turbine will otherwise attempt to parallelize such statements. Yet, with its low-level language style, 
the vigilance in writing complex Swift/T workflows can be taxing, and the resultant code difficult to debug for 
parallelism issues.

In contrast, WDL and Nextflow stylistically separate the areas where sequential execution of multiple com-
mands is permitted. command blocks inside WDL tasks are equivalent to the script blocks inside Nextflow 
processes. Parallel execution is assumed among WDL tasks, unless data dependency exists between inputs 
and outputs of different tasks. Explicit scatter statements parallelize execution over array elements, while 
results are implicitly gathered. Uniquely, Nextflow defines both process dependencies and parallelization via 
input/output variables, where a multi-valued queue channel signals parallelization over its elements. This 
elegant approach yields compact code, at the expense of readability. First, it requires careful pipeline design, 
because a process is executed as many times as the size of its shortest queue channel, and their types and 
sizes matter. Second, gathering results after parallelization needs to be coded explicitly. On the plus side, chan-
nels make it trivial to expand pipelines. For example, expanding from single sample to multi-sample joint calling 
is achieved by merely adding the downstream JointGenotyping process, without the addition of a nested loop 
across the samples (Fig Supplementary 1).

CWL is fundamentally different: its CommandLineTool is an invocation of a single shell command, not 
a series of sequential commands or even a string of piped commands. Because many tools are common among 
bioinformatics pipelines (e.g., samtools), this restriction encourages reuse of the corresponding CommandLi-
neTool modules, facilitating standardization and therefore reproducibility. It is easy to think of a CWL Com-
mandLineTool as a very restricted version of a WDL task: they both have inputs, outputs, metadata, resources 
options and a script, but in CWL only a single command is allowed. Parallelization in CWL is accomplished via 
ScatterFeatureRequirement {}, similar to scatter blocks in WDL.

Executor‑level differences.  The workflow executor is the WfMS component resolving the workflow syn-
tax into a graph of dependencies between tasks, typically expressed as a Directed Acyclic Graph (DAG) (Fig. 1). 
Then it deploys those tasks in the correct order on the given infrastructure by scheduling the jobs, provisioning 
compute resources, and tracking the jobs to completion. Executors may have other functionalities for data stag-
ing, monitoring, and error recovery. These aspects are explored in subsequent sections for key executors of each 
WfMS (Table 2). In this study, we focus on production-ready executors that work in HPC settings. While we do 
examine portability, and comment on cloud-friendliness, a detailed analysis of runners primarily dedicated to 
those environments is beyond our scope.

In Swift/T and Nextflow, the workflow language and its executor are packaged together, and therefore co-
evolve without compatibility issues. Conversely, CWL and WDL only specify the language syntax, which may 
be supported by a variety of execution engines. This results in a healthy competition among the engines, but 
also raises compatibility issues.

In addition to standalone executors, there are API libraries for interpreting workflow languages. For example, 
miniWDL32 is a local runner for WDL and a Python API—a developer toolkit enabling WDL workflows to run 
from within Python scripts. This opens up possibilities of building a richer workflow ecosystem through embed-
ded data parsers, job visualization, and other useful features.

Workflow dependency graph resolution and visualization.  The dataflow paradigm requires the 
executor to deterministically resolve the supported workflow patterns18 into unambiguous DAGs while control-
ling for environmental variables and random seeds34. This determinism ensures that all processes using inde-
pendent inputs are scheduled to run in parallel; whereas processes linked via data dependencies are scheduled 
to run in the appropriate order. Due to these requirements, some features, e.g., conditionals24 and workflow dry 
runs35, are difficult to implement in dataflow programming. Each execution engine we studied negotiates its own 
semantics with the corresponding workflow language to ensure correct DAG construction, succeeding in its own 
way. Workflow DAG resolution requires handling many small details and careful development and co-evolution 
between the executor and the workflow language. Conformance of the executor to the language specification 
is critical to avoid unresolvable patterns when programming complex workflows or when migrating from one 
executor to another36.

Among the four WfMSs we considered, all but Swift/T have built-in engine functionality or auxiliary tools to 
visualize DAGs for debugging and documentation. Nextflow produces the DAG upon completion of a workflow 
execution, in static or interactive format, using Cytoscape.js37 and Dagre graph visualization libraries (Fig. 4a). 
Alternatively, NextflowWorkbench27 and DolphinNext28 provide convenient graphical and web interfaces devel-
oped outside the Nextflow core team for visualizing, creating, deploying and executing Nextflow pipelines. For 
CWL, CWLViewer38 conveniently produces the DAG of a workflow script from its GitHub repository (Fig. 4e), 
if the code is public and complies with CWL best practices. The Rabix suite, by Seven Bridges, provides powerful 
CWL interactive visualization library (CWL-SVG), GUI (Composer), and language server (benten) (Fig. 4d), 
which are used in other sophisticated projects like VueCWL39. For WDL, besides the de facto womtool utility 
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and its graph visualization option (Fig. 4c), EPAM systems have developed Pipeline Builder29, a Javascript 
library for interactively constructing and visualizing WDL scripts (Fig. 4b).

Job execution: resources provision.  Bioinformatics workflows are often heterogeneous in terms of the 
computational resources required for each task. For example, genome assembly can begin with read alignment 
(a core-intensive process), followed by a deBruijn graph construction (a RAM-intensive process). For efficiency, 
the executor must decipher which tasks can be run as individual computational units on hardware (i.e. node) 
with RAM and cores appropriate to needs. Within the dataflow paradigm, these independent units are, by defini-
tion, the vertices on the DAG. Upstream and downstream nodes on the DAG (i.e. prerequisites and dependents, 
respectively) can be placed on other hardware with adequate resources.

The actual provisioning of the computational resources is achieved by interacting with a cluster resource 
manager (CRM), such as PBS Torque, Open Grid Engine, or Slurm. The CRM tracks the available queues, the 
available nodes, and how long nodes will remain occupied. If the workflow language has the ability to specify 
resources necessary for different tasks, then the execution engine may be able to negotiate these requirements 
with the CRM. This is commonly achieved via executor backends, which provide a mechanism to specify the 
computational requirements as part of command line workflow invocation or via configuration files.

Particularly useful is the support for dynamic job scheduling, present in all four WfMSs under consideration. 
During workflow execution a job may pass runtime parameters to another job or schedule other jobs. Customiza-
tion of runtime parameters per workflow stage (“Nomenclature” section), including docker images specifications, 
memory, queue and/or cloud resources is readily possible in Nextflow, CWL and WDL. In Swift/T however, 
these details are specified once at the beginning of the workflow; thus, customization can only be achieved by 
breaking up the main workflow into independent pieces and running those smaller workflows independently. 
Tables 3 and 4 in Ahmed et al.17 show backends supported by select executors, and Fig Supplementary 3 shows 
typical command line invocations.

Job execution: data staging.  Bioinformatics data processing frequently involves movement of private 
and very large datasets (TBs or more) across infrastructure that is set up on a shared filesystem. The resulting 
security and performance concerns create a need to isolate the workflow execution environment and provide 
a means for checking the integrity and permission settings on files used and produced within a workflow run. 
Data isolation is commonly accomplished by enabling special treatment of the file type variable by the engine, 
e.g., file integrity checking and hashing. Additionally, localization (staging) of inputs into a working directory 
unique to each computational unit (1) assures that raw input data remain intact; (2) prevents race conditions if 
a file needs to be accessed by multiple computational units simultaneously; (3) serves as a record of provenance 
for each input, output, intermediate file, script and log, enabling easy monitoring and debugging; and (4) enables 
workflow restart from the failed stage without repeating prior computations.

Nextflow and executors of CWL and WDL all provide this staging capability via a canonical hierarchy of 
execution folders. The working directories of subworkflows, tasks and Scattered blocks are nested within a 
parent directory of the run. Unique folder naming is ensured by using long hexadecimals, names of the work-
flow stages, and/or execution timestamps. The exact structure of the working directory and the subfolder names 
within vary by engine (Supplementary note 4), and the user has no control over these parameters, which may 
seem constraining. However, it pays off in permitting the engine to automatically follow the task dependency 
string and prevent filename clashes for subsequent tasks. Conversely, in Swift/T, the programmer must manually 
create a directory tree and name files, which is error prone in complex workflows.

In addition to the enforced separation of files in the output folder tree, further data staging can be achieved 
by placing them on different filesystems, such as a cloud bucket for inputs vs. local folder for outputs. Nextflow 
supports this out of the box: the analyst need only specify a URL to enable reading of inputs from AWS S3 storage 
or Google cloud buckets. Cromwell and Toil similarly support this ability, though in Cromwell the programmer 
needs to be specific about the filesystem being pointed to. Unfortunately, in Swift/T the support is more limited: 
documentation stipulates the means of specifying remote filesystems, but our experiments with that have not 
been successful.

Portability across HPC environments and the cloud.  Modern biomedical research increasingly ben-
efits from multi-site collaborations. Support for portability, the ability to run a pipeline in computing environ-
ments besides the one on which it was developed, has become one of the deciding factors in adopting a particular 
WfMS. One of the most important aspects impacting portability is hardcoding any system-specific parameters 
or paths. Separating the pipeline code from the input specification helps detect and eliminate this problem, usu-
ally via configuration files. Nextflow, CWL, and WDL made this a requirement. CWL and WDL imposed further 
constraints by using structured YAML and/or JSON files and enforcing variable checks on identifiers or fully 
qualified names at compile time. Swift/T is the least restrictive, putting the onus on the programmer to ensure 
that variables are defined in a way that does not impede portability (Fig Supplementary 3).

All executors we examined have ample support for running in a variety of compute environments (Tables 3 
and 4 in Ahmed et al.17), except that support for AWS and Google Cloud Platform (GCP) is insufficient in Swift’s 
turbine. Cloud deployment in general comes with different considerations than HPC. First, the executor 
needs to communicate with cloud APIs to provision and administer the resources specified in the configurations 
options. Second, the provisioned cloud resources are typically clean machine instances, providing only the basic 
operating system and minimal libraries. Thus, executors rely on containerization of software used by the workflow 
and expect container images of those tools and their dependencies as part of the workflow runtime options. Third, 
significant cost savings can be achieved when executors support automatic sizing of cloud resources, enabling 
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instances to be spun up when needed and shut down when idle; AWS batch is a good example. Finally, workflows 
intended to run in the cloud also expect data to be stored in the cloud. Thus, some level of security is expected 
from the cloud provider. These are important considerations when evaluating the capabilities of a WfMS for a 
project intended to run in the cloud.

While executors in the cloud may be affected by a variety of other factors, such as provider, zone, availabil-
ity of resources or type of machine instance, this is an actively developing area of technology and providing a 
detailed review is beyond the scope of this work. We did, nonetheless, perform a cursory evaluation of port-
ability by deploying the variant calling pipeline in both AWS Batch and Cloud cluster (Table 5), which 
was successful.

Scalability.  When running a workflow on a substantial number of samples in a shared environment, one 
must weigh the trade-offs between total run time and computational cost, which is a product of both the run 
time and number of nodes utilized. Two performance metrics are important: (1) How well the execution engine 
scales with the number of parallel tasks: The task management overhead may increase out of proportion with 
the total number of tasks, if the engine is not programmed efficiently. (2) How well the engine packs tasks on a 
node: It must weigh the core and RAM availability on a node against requirements of the tasks, and pack tasks 
optimally onto nodes, without many gaps or unused resources.

We compared the performance of Nextflow , toil (running CWL), and Cromwell (running WDL and CWL 
code) against these criteria by designing very simple one-step and two-step workflows (Fig. 4). A task was just 
to echo the hostname (i.e. node ID) of the node where the task was placed during execution. The command 
requires a negligible amount of RAM, only 1 core, and takes a minuscule amount of time. Thus any overhead on 
task management is readily apparent from the total time of the workflow. We ran the same workflow with varying 
number of tasks meant to be computed in parallel, on either: 1) the shared 5 nodes HPC, Biocluster, where the 
effects of queuing can be noted (72 cores each); or 2) a dedicated, fixed-size AWS Slurm Parallel cluster 
of 100 nodes (96 cores each), in an attempt to control for any extraneous performance variation.

On AWS, Nextflow and Cromwell+WDL both showed excellent performance up to about 100 tasks: the 
elapsed workflow run time did not increase significantly with the number of tasks, suggesting that they were 
properly parallelized with minimal management overhead (Fig. 3, left panel). Nextflow performed particularly 
well, finishing the runs about 4 times faster than Cromwell. Two-step workflows predictably ran longer, but not 
twice as long, which indicates a substantial amount of time is spent at startup for both engines. Performance 
began to break down at higher task counts, intermittently resulting in failure to start jobs. Nextflow could not 
be used at all on more than 512 tasks: it quickly stopped the run and cleaned-up. In contrast, Cromwell became 
unusable beyond 1024 tasks, but the clean-up for the failed job took a very long time (hours in some cases) before 
finally reporting an exit code.

In subsequent experiments on Biocluster, repeated 5 times to account for queue variations, we used the most 
recent version of both engines, in addition to Cromwell+CWL and toil+CWL (Supplementary note 5.2). We 
excluded Toil+WDL as it did not readily support Slurm CRM. Again, Nextflow always ran much faster than the 

Figure 3.   Scaling a one-step (solid line) and two-step (dashed line) workflow in Cromwell+WDL (black) and 
Nextflow (yellow) on AWS Parallel cluster. The thick green line in the right panel is the theoretical optimum of 
the number of nodes to be occupied by the tasks, computed as the ceiling of tasks/cores-per-node (96). Empty 
circles denote failed runs.
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others, up to 50x at times. Toil+CWL, however, failed rather randomly and inexplicably, but quickly, at different 
scales in each run. Cromwell+CWL performed similar to Cromwell+WDL, with no failures in the tested range.

To understand what caused the scaling issues, we looked into process context switches, both voluntary 
(where processes yield CPU access to another) and involuntary (where the kernel suspends process access) and 
found both types to increase with the task count (Fig Supplementary 5, Supplementary 8). CPU utilization was 
measured as well, as the user+system time divided by the total run time of the task (from the Linux time 
command), however no easily interpretable pattern emerged (Fig Supplementary 6, Supplementary 9). Notably 
though, Cromwell tends to have better CPU utilization with increased task count, while toil+CWL is more sta-
ble across the range. Additionally, with the more recent versions of these runners, speed gains and better CPU 
utilization metrics were realized (Supplementary note 5.2 and 5.3).

We measured the quality of node packing by using the outputs from our mini workflows, the hostnames where 
tasks were run. These records were deduplicated, giving the count of individual nodes used by the workflow. 
We expected no re-use of nodes when the task count is less than the total core count (all tasks are immediately 
parallelizeable in this case); but queuing of tasks otherwise. The theoretical expectation of the used number of 
nodes is marked as the thick green line in Fig. 3 and Fig. Supplementary 7 (rightmost panels), where values below 
the green line suggest queuing of processes; while values above it suggest the executor is using more nodes than 
necessary. Indeed, on AWS, the two engines correctly placed all tasks onto the same 96-core node in runs up 
to 32 tasks (Fig. 3, right panel). In this experiment, while we were controlling Nextflow’s maxForks directive, 
we used the default value of 100 for the queueSize parameter, which defines “the number of tasks the execu-
tor will handle in a parallel manner”. his resulted in Nextlow unnecessarily constraining tasks ≥ 256 to to less 
than 3 nodes, as would have been optimal. Yet, this inefficiency did not prevent Nextflow from outperforming 
Cromwell in terms of run time, despite Cromwell spreading the processes across nodes in near-perfect alliance 
with theoretical expectation. On Biocluster, we controlled both directives in tandem, and this constriction is only 
observed when the task count (512) exceeded the cluster’s total core count (360) as expected (Fig. Supplementary 
7, righmost panel). In both experiments, we note patterns of unnecessary spread of tasks among nodes with both 
engines at times. This is something to keep in mind when working with large data batches, as it is desirable to 
minimize data movement between nodes.

Robustness.  When running large scale analyses, especially in medical production settings, where a work-
flow failure can lead to delay in diagnosis and treatment of patients, it is extremely important to have a WfMS 
that facilitates the development of easy to debug and maintain error-free code, and which results in robust execu-
tion against variations in the nature of the data, load on the compute system, and hardware failures. Beyond tra-
ditional provisions for code robustness, WfMSs have the potential to facilitate recovery and restart after failure of 
an individual analysis step. Ideally, the need to rerun costly analyses from the very beginning could be obviated 
via “safe crash”: by moving the completely processed files to their destination, deleting partially processed files, 
and saving execution logs and status (check-pointing) for all parallel processes. A number of approaches have 
been developed in this field to facilitate these traditional and non-traditional robustness aspects.

Variable typing facilitates earlier discovery of bugs before the workflow is run, especially in compiled languages 
(Table 1). While Swift/T, CWL, and WDL provide the typical String, Integer, Float, and Boolean types, 
Nextflow does not distinguish between these but rather uses qualifiers to indicate how variables are to be handled. 
For example, variables local to a process have a val qualifier, whereas environment variables should be declared 
as env. Workflows in bioinformatics usually operate on files, thus WfMSs must also define a file variable, ideally 
with a mechanism to check whether the file exists and has the right permissions, to avoid data access failures in 
the middle of analysis (cf. “Job execution: data staging” section). While the four WfMSs studied provide this, 
Nextflow goes above and beyond generic functions for reading and writing. Nextflow provides refinements to 
handle especially large, binary and compressed files. Additional domain functions include counting the number 
of records in FASTQ/FASTA files, splitting file entries based on chunk size, memory limit, etc. Such well-vetted, 
built-in functionality significantly reduces the likelihood of programmer error, thus conferring robustness.

Provisions to ease parsing and validating the code can greatly contribute to the robustness of the final soft-
ware. Unsurprisingly, most WfMSs make use of such tools. Nextflow workflows can use nf-core schema 
commands40. Similarly, WOMtool, miniWDL and Oliver ease validating, parsing and generating WDL scripts 
and inputs. CWL takes advantage of standard editor plugins for vim, emacs, VScode and atom, and code gen-
erators for R, Go, Scala, and Python. Swift/T can only be accessed via the command line. No helper library is 
mentioned in the documentation either.

Data streaming is an alternative to data staging, and is very popular in bioinformatics. Here, instead of saving 
output of an upstream task to a file that is read by the downstream task, data are streamed, usually via a Linux 
pipe, from one process to the next. Such streaming requires synchronization of the two processes and could lead 
to complicated logic. Additionally, it can make it harder to record and debug execution logs. Perhaps for these 
reasons, data streaming is only directly possible with Nextflow DSL-2 syntax, as of the time of writing (March 
2021). For CWL, the language specification defines a ’streamable: true’ field for output files, but direct 
support for this property is not yet part of the reference cwltool or other CWL runners. Neither Cromwell, Toil, 
nor Swift/T support piping either.

Job retries is an approach to retry a failed workflow step, and can be appropriate if the failure happened for 
an intermittent reason, such as service time-out, node unavailability or node failure. Swift/T allows retrying a 
failed job a number of times that can be set by the user, on the same MPI rank or on a randomly selected rank 
from those allocated to the workflow, possibly in other cluster nodes. Nextflow couples the maxRetries, 
maxErrors, and errorStrategy process directives to allow the user to retry a failed process, ignore 
the error, finish the run, or totally terminate the workflow effectively killing submitted processes. Similarly, 
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Cromwell allows maxRetries as part of the runtime or workflow options, and also allows to either 
ContinueWhilePossible or resume but with NoNewCalls to quickly exit when a failure is detected.

Caching or automatic check-pointing, i.e., the ability to resume partial execution of a run, saves time and com-
putational resources, especially when a large chunk of analysis has completed successfully. Swift/T is poor in this 
regard, as it always starts execution from the beginning, unless the programmer manually codes subworkflows 
separated at the anticipated checkpoints, and implements options to manually rerun subworkflows individually17. 
Nextflow is on the opposite end of the spectrum, permitting very granular access to workflow stages for restart 
purposes. This is accomplished by keeping all staged and intermediate files in a work directory with a cache 
directive enabled by default to index both scripts and input metadata (name, size, path, etc.). The granularity of 
restart can be controlled via deep and lenient modes. In contrast, call caching is by default disabled in Crom-
well. It can be enabled by configuring a MySQL database instead of its default HSQL in-memory database and 
enabling the options for finer metadata checking, such as file hash caching, path prefix, and docker images’ tags.

Debugging workflows.  There are many reasons a workflow can fail: the nature of the data, a malfunction 
in the bioinformatics tool itself, improper setup or call of the bioinformatics tool, a bug in the execution engine, a 
hardware problem, an operating system issue, or something else entirely. Ideally, the log files for all these aspects 
would be cleanly separated, so that the workflow operator could easily trace the problem by hypothesizing the 
source and going through these logs one at a time. However, due to the asynchronous execution of independ-
ent workflow steps, messages can be echoed into the logs out of logical order, resulting in difficulty interpreting 
them. Each WfMS resolves this issue in its own way.

Swift/T provides a simple MPE-based model to track execution at the level of Swift and turbine operators. 
Messages are printed into a single log file in order of occurrence, not the order of the pipeline DAG, making it 
hard to discern invocations of individual bioinformatics tools. This makes it very difficult to determine the first 
step that failed and what data it was running on. Tool-level logs must be custom made, and even these logs can 
be difficult to interpret.

In contrast, as we mentioned before (“Job execution: data staging” section), Nextflow and the runners of CWL 
and WDL produce a canonical hierarchy of execution folders, with logs capturing the status of each workflow 
step saved into the same subfolder as the actual bash script being executed, along with the corresponding input 
and output data. Therefore, all the information about that particular step is in one place. In addition, the standard 
output from the executor is normally enough to establish which subfolder to inspect for signs of trouble.

Monitoring the progress of workflow execution.  The ability to monitor the progress of a workflow 
becomes critical with more tasks and increased workflow complexity. This monitoring facilitates scheduling, 
helps prepare the output data staging area, allows early detection of lag in a step, and yields information neces-
sary for reporting, subsequent or retrospective analysis, and billing.

Nextflow supports several levels of detailed monitoring upon executing a workflow: (1) a crude trace report, 
(2) an html timeline, and (3) a complete execution report, including information about resources 
usage and processes runtime metrics (e.g., status, hash, command). Additionally, Nextflow is adding the Research 
Object (RO) model41, and thus adding greater transparency by uniquely identifying, collecting, and linking all 
provenance metadata of workflow runs42. Additionally, Nextflow has support for email notifications of workflow 
events like onComplete and onError, independent of the usual notifications from the CRM.

For WDL workflows, Cromwell only supports a timeline visualization, but only if run in server mode. 
The CWL community has developed CWLProv43, an informal profile standard defining how to record prov-
enance of a workflow run as an RO using Linked Data standards44. This is implemented in the reference cwl-
tool, and is planned for implementation in toil-cwl-runner too.

There are efforts to improve monitoring capabilities of these WfMS. Nextflow has the Tower platform 
(https://​tower.​nf/) for efficient monitoring and deployment; whereas WDL workflows can be submitted to a 
Cromwell server and examined via cromshell45 and Oliver46.

Reproducibility and standardization.  Reproducibility in biomedical analyses has become important 
recently47,48. For workflows, this means that anyone should be able to reconstruct the exact workflow run, includ-
ing the correct sequence of steps, the actual commands, the runtime parameters and options, and the handling 
of data, e.g., chunking for parallelization, to reach the exact same conclusions despite differences in hardware, 
operating systems, and software dependencies. All this information must therefore be recorded in a way that is 
shareable and easy to understand, usually via code design documentation and the logs and RO described above.

Package managers, e.g., Conda and Bioconda49, provide means for clean shipping and installation of tools. 
Containerization technologies, e.g., docker and singularity, and their repositories (e.g Dockstore50 
and quay.io) facilitate the reproducibility of computational pipelines. Both these advancements are increas-
ingly integrated in recent releases of WfMSs. Nextflow utilizes a conda directive to specify packages needed 
by a given process and supports a container directive that allows processes to specify the docker 
or singularity images in which execution occurs. While lacking conda support, Cromwell can run tasks 
within a docker image specified in a WDL task or CWL CommandLineTool runtime options. Singu-
larity images require special handling in the backend configuration file, but are supported too. Toil has similar 
features, but neither is supported in Swift/T.

Furthermore, the high complexity of biological workflows has driven the community to develop extra require-
ments for code documentation21,40,50. Users expect code annotation via extensive metadata including detailed 
workflow description, author information, and labels for stages, inputs, and outputs. Such metadata facilitate 
debugging, enhance overall project documentation via annotations on the DAG, help with maintaining and using 

https://tower.nf/
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a workflow written by someone else, and make code more searchable and citable. CWL and WDL each provide 
the code annotation capability via metadata blocks, and Nextflow via both the manifest scope of the configura-
tion file and the directives of processes. CWL also includes support of EDAM ontology and SciCrunch identifiers 
for dependencies. Swift/T lacks this special workflow annotation feature, and only supports in-line comments.

Pragmatically, CWL recommended practices21 include shipping pipelines with permissive licenses and an 
SPDX identifier and using SoftwareRequirement to indicate dependencies and tool versions but warn 
against reliance on InlineJavaRequirement where possible. Adhering to these practices is a precursor to 
pipeline visualization and sharing via CWLViewer38. Likewise, curating Nextflow pipelines in nf-core40 requires 
using an MIT license, docker bundled software, stable release tags, a common pipeline structure, and continu-
ous integration testing, in addition to passing their nf-core lint tests. They also recommend bundling the 
software via bioconda, using recent reference genome drafts and optimized output formats, and including a 
DOI, along with support and benchmarks from running in cloud environments40.

Taken together, the above efforts to enforce reproducibility of analyses have also resulted in a certain stand-
ardization of workflow implementation and distribution, which supports wider adoption of the WfMSs.

Adoption and support.  Nextflow, CWL and WDL are fruits of practicing bioinformaticians and computer 
scientists collaborating with biologists, who needed practical solutions to the problem of reliably performing 
their own large-scale analyses. Consequently, they enjoy greater adoption than Swift/T (Table 3), albeit relying 
on comparably very permissive open source licenses. As a result, their evolution is rapid and highly community-
driven, and user support is easy to find via mailing lists, gitter channels, Twitter, GitHub issues, etc. The commu-
nity aspect is particularly important here, with numerous conferences, codefests, hackathons, and even GA4GH 
itself serving to develop, refine and cross-pollinate among the WfMSs51–54.

Adoption and support are further facilitated by commercial providers of genomics software-as-a-service. 
DNANexus provide dxWDL (https://​github.​com/​dnane​xus/​dxWDL) and dx-cwl (https://​github.​com/​dnane​
xus/​dx-​cwl). Seven Bridges developed rabix and many supporting utilities for CWL workflows, as they adopt 

Table 3.   GitHub activities from each WfMS (March 4th, 2021). Contributors is the number of contributors in 
each repo, Open and Closed refer to the count of open and closed issues and pull requests in the repo.

WfMS First commit Contributors Closed Open License

Swift-t 2011-05-11 16 109 81 apache-2.0

Nextflow 2013-03-22 81 1770 159 apache-2.0

CWL 2014-09-25 62 667 249 apache-2.0

WDL 2012-08-01 44 376 50 bsd-3-clause

Figure 4.   DAGs corresponding to a simple workflow of 2 processes (besides output aggregation) used to assess 
the scalability of the executors of “Scalability” section, as generated by the most recent version of each executor 
or utility visualizer of each language in July 2021.

https://github.com/dnanexus/dxWDL
https://github.com/dnanexus/dx-cwl
https://github.com/dnanexus/dx-cwl
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CWL on their Cancer Genomics Cloud55. AWS provides the iGenomes database (https://​regis​try.​opend​ata.​aws/​
aws-​igeno​mes/) with the ability to directly use Nextflow and Cromwell on AWS Batch.

With this much collaborative cross-talk activity in the community, it is unsurprising that sometimes the 
boundaries between the WfMSs gets blurred. The ability to translate a workflow language into intermediate rep-
resentation, e.g., the WOM representation of CWL and WDL code in Cromwell, enables stitching meta-workflows 
written in more than one language. It is quite possible that in the future some kind of a hybrid workflow coding 
paradigm might emerge, adopting the best from each of the current WfMSs and discarding the differences. Yet, 
a tricky aspect to this community-driven movement is that the evolution of a workflow language and its engine 
might sometimes outpace the development of a given pipeline. Therefore, conformance tests and backwards 
compatibility between a workflow language and an execution engine are critical.

Cross‑compatibility and conformance to standards.  For a workflow language and an executor 
engine to work well together, they would ideally conform to the language specification and provide backwards 
compatibility to one another. This has not yet been widely the case, which is exactly what made this need appar-
ent. For example, among WDL executors, both Toil and Cromwell can generate an abstract syntax tree from the 
same WDL code, except Toil’s Hermes parser generator56 translates tasks to Python functions, while 
Cromwell translates them into Bash. The supported code logic by each executor is also different: Cromwell does 
not allow nesting loops in version draft-2 code, while Toil does not allow nesting a conditional within a loop 
or cascading tasks within a scatter body. In practice this leads to a lot of refactoring when switching from Crom-
well to Toil. Similarly, different CWL runners support differing subsets of the possible requirements in the 
language specification or may even have different interpretations due to ambiguity in the language specification 
itself36. We believe the field would benefit from a wider conversation on this topic. 

Highlights: Which WfMS to use day-to-day

In light of this, a pragmatic approach to workflow choice could be the following:

 1. Assess: is there a need to build a new pipeline, or there is an existing reasonable pipeline in the Nextflow, CWL,or WDL repos?

  (a) If a workflow exists that follows good coding practices, it should be adopted and modified as per specific needs.

  (b) If starting fresh, without restrictions by collaborators’ preferences or existing legacy code-base:

     i. If a quick development cycle is important, Nextflow is optimal.

     ii. If code readability is important, WDL is optimal.

     iii. If execution environment is variable, or there is a need to work across heterogeneous hardware environments, CWL is optimal.

     iv. Table 1 is a quick overview of each language’s features at a crude level.

 2. Assess: what execution constraints are in place?

  (a) For HPC environments, pay particular attention to runners supporting differnt CRMs. Our recommended free, production-scale run-
ners for these are: Cromwell (for both WDL and CWL), and Nextflow (for Nextflow workflows). Toil was less performant in comparison. 
(refer to section: Scalability)

  (b) For running in the cloud, pay particular attention to runners with support for different cloud APIs, and features like automatic 
rescaling, containerization, and security settings. Table 2 gives a quick overview of runners, language versions supported by each, and key 
performance aspects.

Discussion
The choice of a WfMS for a specific use case is dependent on the immediate needs and resources of the applica-
tion. Within the bioinformatics community, Nextflow, CWL, and WDL seem to be among the most adopted. The 
communities using and developing these three systems have been interacting closely since their introduction 
to the field, resulting in a very comparable set of semantic and engine features, though the nomenclature differs 
at times. Two other popular systems not examined in this study are Snakemake57 and Galaxy58. GA4GH TES 
support was only added to Snakemake in their November 2020 release, and Galaxy follows a rather different 
philosophy focusing on graphical user interface (while having its own CLI) and hence were both excluded.

To the same lines, this work has excluded other mature WfMS not GA4GH-supported like pegasus59, even 
though, at the time of writing, the pegasus team is developing utilities to import CWL workflows. Aside from 
arvados, this makes, pegasus an attractive first choice for running production-scale CWL code, compounding 
the project’s 20 years of experience in optimizing the performance features examined in this study, and uniquely 
having other characteristics like: 1) multitudes of interfaces, graphical and CLI-based, for real-time monitoring, 
debugging and reporting performance metrics; 2) ability to run seamlessly in heterogeneous grid, cloud and HPC 
staging sites; and 3) smooth data transfers for staging via many protocols, including http, scp, GridFTP, 
iRods, AWS S3, ... etc60,61.

Another category is engines built as libraries in general-purpose programming languages, like Parsl62 (Python) 
and SciPipe63(Go). These engines give convenient access to the full expressiveness power and flexibility of the 
underlying language. Arguably, they are easier to learn, and hence, more attractive to adopt by a broader com-
munity than DSL workflow languages. At present, engines in this category seem less popular in the community 
though.

Scientific and business WfMSs.  The emphasis on Scientific in this manuscript is to distinguish those 
WfMSs typically used in modeling and other scientific experiments, from those employed in business applica-
tions or other organizational contexts where human participants make decisions7. Accordingly, scientific work-
flows orchestrate tools (or services) based on data dependencies and often involve many data types. Business 

https://registry.opendata.aws/aws-igenomes/
https://registry.opendata.aws/aws-igenomes/
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workflows on the other hand have a richer set of control flow constructs to support hierarchical dependencies64, 
logic correctness verification65, data flow modeling and consistency validation66, and resource requirement 
modeling and analysis67.

Additionally, the need to reuse and port workflows within the sciences is contrasted with restrictions on 
data and process access in business. Yet, the business community is more strict in developing and following 
standards64, with frequent evaluations and frameworks for benchmarking conformance with those standards68,69. 
The drive for standardization—despite early interoperability efforts, eg IWR64 and SHIWA70, has not surged in 
the sciences until recently, with ever larger scale collaborative and consortia projects71,72, and the push towards 
computational reproducibility73. Among others, this resulted in a heritage of bespoke systems, inconsistent ter-
minology and inoperable formats, as a consequence of different WfMSs design requirements. Standardization, 
conformance evaluation and interoperability will continue to be an active area of research in scientific WfMSs.

WfMSs in clinical and molecular diagnostic settings.  Similar to research laboratories, clinical and 
diagnostic labs are concerned with the WfMSs aspects we examined above (also see supplementary note 1). 
However, there is focus towards properly developed, validated and operated pipelines that ensure the security of 
patient-identifying information, and the integrity and regulated access to data throughout each pipeline stage as 
per applicable laws and regulations74,75.

End-to-end validation using human samples, supplemented by in-silico validation, is both necessary and 
challenging given the constantly evolving and/or proprietary nature of computational tools, assay types and 
technology platforms. In fact, Roy et al. (2018) validation guidelines treat the bioinformatics pipeline as an inte-
gral part of the test procedure, and therefore require all its components to be validated, along with any filtering 
method applied to input data, and within an environment similar to the real-world lab where the pipeline will 
be used. Robust validation methods can involve the use of a “golden” set of workflow output files like bams and 
vcfs based on human samples with known laboratory-validated variants. This way, concordance with known 
variants can be tested, and additions or modifications to the workflow made safely. This validation should 
be overseen by a qualified medical professional with NGS training, only after the complete pipeline has been 
designed, developed and optimized.

To allow for ongoing development without interfering with production-tested pipelines, it is beneficial to 
have separate stages in a clinical computing environment such as development, testing, and production. Code is 
developed and bugs are resolved in the development and testing stages, so by the time code gets to production, 
it has been robustly tested in the prior stages. Existing usable code in the production stage will not be changed 
or updated until all tests are passed. This allows the clinical labs to use the production code, and developers to 
push new code out simultaneously that will eventually be tested and deployed in production.

Infrastructure as a predicate of WfMS design.  A WfMS design is based on the infrastructure where 
it is intended to run. By employing an MPI library for parallel data communication, Swift/K76 for example, was 
made for large-scale computations on HPC environments extending to extreme scale supercomputing applica-
tions, and so are its successors—Swift/T77,78 and Parsal62- though Parsal has a wider bank of configurable execu-
tors including different cloud providers. On the other hand, other WfMSs like Toil25 and CWLairflow79 were 
developed for data analysis in the cloud, and hence supported containerization. Standard languages, CWL and 
WDL, aimed to enhance portability by obviating the need for intermediate data representation while allowing 
different groups to design and use executors that most fit their needs. This direct interplay between infrastruc-
ture and WfMSs will continue to play a key role in the design and composition of WfMSs well into the future 
with extreme scale systems and deep memory architectures2.

For example, while both in situ (i.e HPC) and distributed (i.e clouds and grids) workflows are challenged by 
analysis concurrency, locality and system topology awareness; more focus in the latter is paid towards security 
and crossing administrative domains2. Contrary, in situ designs, especially future exascale level, are challenged 
by power considerations, robustness, productivity with heterogeneous computing cores, increasingly complex 
hierarchical memory systems and small or no growth in bandwidth to external storage2,80. Consequently, Deel-
man et al.2 defines 4 key challenge areas for WfMS designs at the next scale: efficient task coupling, programming 
& usability, performance optimization & robustness, and validation & data integrity81- a list to which da Silva et 
al.6 add aspects like integrating big data analytics and human in the loop.

Scalability.  In bioinformatics, the community is still rather slow to adopt big data technologies, despite a 
few successful use cases (e.g., ADAM82, Gesal83, and most notably, the GATK’s move towards Spark re-imple-
mentations of existing trusted tools26). This is in part due to a need for rigorous and lengthy approval cycles for 
clinical applications74, and also more incentives and rewards for designing and building new tools rather than 
improving existing ones. Collectively, this means that in a majority of tools commonly used today, scalability 
has been thought of as an ad hoc- not as an integral part of software design. This manifests as more reliance on 
threading than MPI implementations for example, and an often complicated dependency stack for tools to work. 
Therefore, there is a real need for WfMSs that support complex execution patterns (at least DAGs) and large data 
volumes.

Yet, fairly benchmarking and reporting the scalability of different WfMSs remains elusive. For example, Swift/T 
papers demonstrate scalability in task throughput versus cores to extreme- and peta- scale computations84,85, 
congruent with the intent of its developers to use it for large-scale parallel applications. Similarly, Parsal literature 
differentiates strong scalability, running the same number of jobs (50,000) vs increased number of workers (up 
to 105 ), from weak scalability, running the same number of tasks per worker (10) while increasing the number 
of workers62. Conversely, more bioinformatics-oriented WfMSs tend to demonstrate scalability in relation to 
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the number or size of samples analyzed: Toil reports > 20,000 RNA seq samples analyzed on 1,000 nodes AWS 
c3.8xlarge cluster (each node of 32 cores, 60GB RAM, 640 GB SSD) in  4 days, and demonstrates scalability 
in terms of time and costs savings25, GLnexus quotes a 243,953 exome sequencing samples (33TB of compressed 
gvcfs) jointly called in 36 hours wall time with 1,600 threads86.

Other comparative evaluations.  Previous comparative manuscripts tend to be largely descriptive2,6–9,87. 
The closest to our work is Larsonneur et al.16, where testing was limited to a single node in a cluster, and exam-
ined WfMSs needed 4-6 minutes to run a genetic linkage analysis on variants from whole genome sequencing 
data of a trio88. This is a realistic bioinformatics use-case in terms of analysis complexity, but not in terms of com-
putational requirements. It is also not clear how comparable the implementation was in the systems compared: 
Snakemake (python-based), Pegasus, Nextflow (java-based), Toil+CWL (python-based), and Cromwell+WDL 
(java-based). Regardless, they conclude reported performance differences are due to the algorithms used to 
compute job dependencies, and criticize java-based engines for consuming the most memory. Their results indi-
cate that Pegasus, despite its very limited use in bioinoformatics, is optimal for HPC environments (performing 
better or at least similarly to the other top performing executors in most categories: elapsed time, CPU usage, 
memory, and number of inodes). Snakemake was best in terms of I/O wait time and idle time, and Cromwell did 
the best in terms of number of voluntary and involuntary context switches, but was the worst in most the other 
categories (closely followed by Toil). Therefore, they advocate for MPI-based execution engines.

A recent relevant paper is that of Jackson & Wallace89. By rapid prototyping, they quickly evaluated Snake-
make, CWL+CWLtool, CWL+Toil, and Nextflow on a subset of RiboVis90 workflows. Like our approach, this 
gave them a better perspective than solely reading the documentation, tutorials or other review papers. Also, their 
criteria for selecting those WfMSs were adoption and support within the bioinformatics community, maturity, 
and licensing. However, the scope of their paper did not go into as great a depth in examining features as was 
done here.

Trends and future directions.  The revolution in the size and complexity of genomic data generation will 
continue to impact and be impacted by the progress in technology at the software and hardware levels. This man-
ifests as a global trend in the community and funding bodies to attend to methods and software design, and also 
to plan for data analysis and handling as much as (if not more than) data generation. Another aspect are global 
efforts like those of the GA4GH and their designation of driver projects to refer to technology advancement at 
the levels of data transfers, security, storage and other relevant processing and accessibility aspects including 
ethics.

An optimistic trend for bioinformatics workflows is more attention being paid towards bridging the divide 
between user interface friendliness and expressiveness. On one hand, WfMSs like Galaxy that targeted user-
friendliness from the beginning, are continuously expanding their code base with features to allow finer and 
more flexible control of execution details58. On the other, for the command-line frameworks examined here, 
many supporting tools exist that allow more friendly interfaces to the creation and deployment of workflow: 
NextflowWorkbench27 & DolphinNext28 for Nextflow; Rabix composer & CWL-Experimental (https://​
github.​com/​common-​workf​low-​langu​age/​cwl-​ex) for CWL; and womtool for WDL. Remarkably, away from 
womtool, all those supporting tools were contributed by the language’s broad community (and not its core 
developers’ team).

The growing need for portability of analyses also led to standard languages development9—and ultimately 
decoupling the language specification from its engine implementation. Immediate benefits include better synergy 
between what a language offers and what patterns an analyst actually needs supported, and also more human 
readable (WDL) and/or machine interoperable (CWL) languages; while having open communications between 
communities supporting the different standards. Equally, executors supporting multiple backends, leading to 
GA4GH standards (like TES and WES- minimal APIs describing how a user submits a tool/workflow to an execu-
tion engine in a standardized way), and thereby giving more portability across platforms. For example, many 
runners have been developed to execute CWL code, including Rabix91, Avados, cwl-tes, Toil25, and AWE92,93; 
while WDL code can be run via Cromwell26 or Toil25. Additionally, there are runners for both languages on 
dedicated cloud platforms like DNAnexus, Seven Bridges, and Consonance. Concurrently, this encouraged 
other concerted efforts in areas like workflow provenance94, and design of more powerful graphical interfaces, 
like: Rabix Composer91 and CWLviewer38.

Thus, abiding by the FAIR principles10 for tools and workflows became a necessity as we move towards cloud 
computing9. For these purposes, many repositories exist today for sharing tools. Dockstore50, the standard imple-
mentation of the GA4GH TRS, is now hosting docker-based tools described in Nextflow, besides CWL and WDL. 
Projects like bio.tools (https://​bio.​tools/), an ELIXIR Tools & Data Services Registry, support the findability and 
interoperability of bioinformatics application software by employing biotoolsSchema and EDAM ontologies95 
for software description and annotation. BioContainers96 is also another remarkable project as it hosts both both 
docker and rkt images, with special focus on tools in proteomics, genomics, transcriptomics and metabolomics. 
The ability of a WfMS to seamlessly fetch images from these repositories or publish workflows will undeniably 
be a bonus in today’s market; along with the core features of running in heterogeneous environments, robust-
ness and scalability. As the field evolves, the need for systematic performance benchmarking68 and conformance 
testing frameworks69 grows.

https://github.com/common-workflow-language/cwl-ex
https://github.com/common-workflow-language/cwl-ex
https://bio.tools/
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Methods
Nomenclature.  We use the terms workflow and pipeline interchangeably to describe the steps of a given 
analysis or its implementation. An analysis step, or stage, of a workflow, means a self-contained computational 
unit, including serial invocation of multiple command line tools. In some WfMS nomenclatures this is called a 
process (in Nextflow), task (in WDL), or leaf app (in Swift/T). A workflow is therefore a collection of these steps 
strung together according to some logic, though a workflow script may consist of sub-workflows, a group of steps 
that are themselves a workflow. It is the execution engine, runner, or executor that handles the execution details 
of running these stages. Finally, we use the word job for whatever computation is submitted to the resource 
manager in an HPC setting.

Use case I: variant calling pipeline.  Genome Analysis Toolkit (GATK)’s variant calling pipeline97,98 is a 
typical bioinformatics pipeline that is ideal for testing the expressiveness of a workflow language and the capabil-
ities of a workflow execution engine (Fig Supplementary 1). To curtail lengthy run times, proper implementation 
of this pipeline requires packaging calls to the bioinformatics tools and interleaving the phases of serial and par-
allel processing over multiple samples. Care must be taken to avoid overwhelming the HPC cluster with a large 
number of jobs or overusing the compute resources. Additionally, upholding the maintenance, portability, and 
reproducibility of this pipeline can be taxing on the developer, due to its many steps and large number of con-
figurable parameters (supplementary note 1). We used a synthetic dataset, based on the hg19 human genome 
assembly and using Illumina TrueSeq v1.2 targeted regions (Whole Exome Sequencing) to 30X sequencing 
depth, generated by the NEAT simulator99. Simulation code is linked to in section Additional information.

Use case II: scalability evaluation.  Scalability is an important feature of a WfMS that reflects its ability 
to parallelize across an increasing number of tasks without slowing down processing. To test the scalability of 
WfMSs without biasing the results with the intricacies of variant calling, we built a simplified workflow: Each 
task was simply a hostname command, scattered as an array of n parallel processes across n cores (i.e., a 1-step 
workflow). Additionally, we tested how task dependency chains affected scalability by building a cascade of two 
identical tasks, also scattered n times across n cores (i.e., a 2-step workflow, Fig. 4). We performed multiple runs 
while varying the scalability parameter n from 1 to the maximum number of cores in the cluster, and tracked 
which node every task was deployed on and when. This allowed examination of how well the tasks were distrib-
uted among the nodes, the overhead to initiate the WfMS, and the maximum possible throughput.

WfMSs under consideration.  We chose WfMSs (Table 4) that support the widely adopted Global Alliance 
for Genomics and Health (GA4GH) APIs: the Workflow Execution Service Schema (WES) for 
describing how a user submits a workflow to an execution engine in a standardized way, the Task Execution 
Schema (TES) for describing batch execution tasks (implemented primarily as Funnel: https://​github.​
com/​ohsu-​comp-​bio/​funnel), and the Tool Registry Service (TRS) for sharing code (implemented 
primarily as dockstore: https://​docks​tore.​org). These WfMS languages are Common Workflow Languagen 
(CWL)100, Workflow Description Language (WDL)26 and Nextflow101. For contrast, we included Swift/T77,85, a 
WfMS developed and used primarily in peta- and exascale physics applications84. We evaluated the language 
properties of Swift/T, but did not test its scalability as it has been thoroughly examined earlier (e.g.,80,85). All four 
of these WfMSs use the dataflow paradigm to provide implicit parallelism in running computations based on the 
availability of data and compute resources31, making them suitable for our use case of massively high-throughput 
production environments.

Computational systems.  The above pipelines were developed on personal computers, then ported to an 
HPC machine (Biocluster)102 and to Amazon cloud AWS (Table 5). Biocluster utilizes Slurm for job scheduling 
and includes five Supermicro SYS-2049U-TR4 nodes of 72 Intel Xeon Gold 6150 2.7 GHz cores, 1.2 TB 
RAM each. In AWS we tested three different environments: (1) Batch, provided by AWS, for optimal provi-
sioning of compute resources during batch processing; (2) Cloud cluster, which is built by Nextflow at run 
time and uses Apache Ignite for resource management; and (3) a dedicated, fixed-size Slurm Parallel 

Table 4.   The WfMSs examined in this study. † Other engines were limited in portability, conformance to 
language specification, or setup (Table 2). ‡ Repositories with identical code structure, which facilitated 
comparison of results (Supplementary note 1). a Common Workflow Languagen (CWL); Workflow Description 
Language (WDL).

WfMS

Use case I: Variant calling pipeline Use case II: Scalability evaluationLanguage Engine

Swift/T GATK3; multi-sample; single-step if needed17; https://​swift-t-​varia​nt-​calli​
ng.​readt​hedocs.​io/​en/​latest/ –

Nextflow GATK 4; multi-sample; https://​github.​com/​ncsa/​Genom​ics_​MGC_​Varia​
ntCal​ling_​Nextf​low/​tree/​dev-​gatk‡

Same repository for these three WfMSs (https://​github.​com/​azzaea/​scala​
bility-​tst)CWLa Cromwell, Toil† –

WDLa Cromwell† GATK4; single sample; https://​github.​com/​ncsa/​Mayom​icsVC/​tree/​
dev-​gatk‡

https://github.com/ohsu-comp-bio/funnel
https://github.com/ohsu-comp-bio/funnel
https://dockstore.org
https://swift-t-variant-calling.readthedocs.io/en/latest/
https://swift-t-variant-calling.readthedocs.io/en/latest/
https://github.com/ncsa/Genomics_MGC_VariantCalling_Nextflow/tree/dev-gatk
https://github.com/ncsa/Genomics_MGC_VariantCalling_Nextflow/tree/dev-gatk
https://github.com/azzaea/scalability-tst
https://github.com/azzaea/scalability-tst
https://github.com/ncsa/MayomicsVC/tree/dev-gatk
https://github.com/ncsa/MayomicsVC/tree/dev-gatk
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cluster that we constructed out of 100 worker nodes and a head node, all m5a.24xlarge instances with 
96 cores and ∼412 GB RAM each, configured using default AWS settings.

Data availability
The synthetic WES dataset used for the performance analysis of variant calling workflow will be made available 
by the authors, without undue reservation, to any qualified researcher. The commands used to generate this 
synthetic data are available at https://​github.​com/​ncsa/​Mayom​icsVC/​tree/​dev-​gatk. Other code and data are 
provided in the respective repositories of Table 4.
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