By considering a lattice model of extended phase space, and using techniques
of noncommutative differential geometry, we are led to: (a) the conception of
vector fields as generators of motion and transition probability distributions
on the lattice; (b) the emergence of the time direction on the basis of the
encoding of probabilities in the lattice structure; (c) the general
prescription for the observables' evolution in analogy with classical dynamics.
We show that, in the limit of a continuous description, these results lead to
the time evolution of observables in terms of (the adjoint of) generalized
Fokker-Planck equations having: (1) a diffusion coefficient given by the limit
of the correlation matrix of the lattice coordinates with respect to the
probability distribution associated with the generator of motion; (2) a drift
term given by the microscopic average of the dynamical equations in the present
context. These results are applied to 1D and 2D problems. Specifically, we
derive: (I) The equations of diffusion, Smoluchowski and Fokker-Planck in
velocity space, thus indicating the way random walk models are incorporated in
the present context; (II) Kramers' equation, by further assuming that, motion
is deterministic in coordinate spaceComment: LaTeX2e, 40 pages, 1 Postscript figure, uses package epsfi