115 research outputs found

    Charge transfer dynamical processes at graphene-transition metal oxides/electrolyte interface for energy storage: Insights from in-situ Raman spectroelectrochemistry

    Get PDF
    Hybrids consisting of supercapacitive functionalized graphene (graphene oxide; GO reduced graphene oxide; rGO multilayer graphene; MLG, electrochemically reduced GO; ErGO) and three-dimensional graphene scaffold (rGO HT ; hydrothermally prepared) decorated with cobalt nanoparticles (CoNP), nanostructured cobalt (CoO and Co 3 O 4 ) and manganese (MnO 2 ) oxide polymorphs, assembled electrochemically facilitate chemically bridged interfaces with tunable properties. Since Raman spectroscopy can capture variations in structural and chemical bonding, Raman spectro-electrochemistry in operando i.e. under electrochemical environment with applied bias is employed to 1) probe graphene/metal bonding and dynamic processes, 2) monitor the spectral changes with successive redox interfacial reactions, and 3) quantify the associated parameters including type and fraction of charge transfer. The transverse optical (TO) and longitudinal optical (LO) phonons above 500 cm -1 belonging to Co 3 O 4 , CoO, MnO 2 and carbon-carbon bonding occurring at 1340 cm -1 , 1590 cm -1 and 2670 cm -1 belonging to D, G, and 2D bands, respectively, are analyzed with applied potential. Consistent variation in Raman band position and intensity ratio reveal structural modification, combined charge transfer due to localized orbital re-hybridization and mechanical strain, all resulting in finely tuned electronic properties. Moreover, the heterogeneous basal and edge plane sites of graphene nanosheets in conjunction with transition metal oxide \u27hybrids\u27 reinforce efficient surface/interfacial electron transfer and available electronic density of states near Fermi level for enhanced performance. We estimated the extent and nature (n- or p-) of charge transfer complemented with Density Functional Theory calculations affected by hydration and demonstrate the synergistic coupling between graphene nanosheets and nanoscale cobalt (and manganese) oxides for applied electrochemical applications

    The effect of lysergic acid diethylamide (LSD) on whole-brain functional and effective connectivity

    Get PDF
    Psychedelics have emerged as promising candidate treatments for various psychiatric conditions, and given their clinical potential, there is a need to identify biomarkers that underlie their effects. Here, we investigate the neural mechanisms of lysergic acid diethylamide (LSD) using regression dynamic causal modelling (rDCM), a novel technique that assesses whole-brain effective connectivity (EC) during resting-state functional magnetic resonance imaging (fMRI). We modelled data from two randomised, placebo-controlled, double-blind, cross-over trials, in which 45 participants were administered 100 ÎĽg LSD and placebo in two resting-state fMRI sessions. We compared EC against whole-brain functional connectivity (FC) using classical statistics and machine learning methods. Multivariate analyses of EC parameters revealed predominantly stronger interregional connectivity and reduced self-inhibition under LSD compared to placebo, with the notable exception of weakened interregional connectivity and increased self-inhibition in occipital brain regions as well as subcortical regions. Together, these findings suggests that LSD perturbs the Excitation/Inhibition balance of the brain. Notably, whole-brain EC did not only provide additional mechanistic insight into the effects of LSD on the Excitation/Inhibition balance of the brain, but EC also correlated with global subjective effects of LSD and discriminated experimental conditions in a machine learning-based analysis with high accuracy (91.11%), highlighting the potential of using whole-brain EC to decode or predict subjective effects of LSD in the future

    Solvent-free anhydrous Li+, Na+ and K+ salts of [B(3,5-(CF3)2C6H3)4]-, [BArF4]-. Improved synthesis and solid-state structures

    Get PDF
    A modified, convenient, preparation of solvent-free, anhydrous, Li+, Na+ and K+ salts of the ubiquitous [BArF4]- anion is reported, that involves a simple additional recrystallisation step. Anhydrous Na[BArF4], K[BArF4], and [Li(H2O)][BArF4], were characterised by single-crystal X-ray diffraction

    Activation of Regulatory T Cells during Inflammatory Response Is Not an Exclusive Property of Stem Cells

    Get PDF
    BACKGROUND: Sepsis and systemic-inflammatory-response-syndrome (SIRS) remain major causes for fatalities on intensive care units despite up-to-date therapy. It is well accepted that stem cells have immunomodulatory properties during inflammation and sepsis, including the activation of regulatory T cells and the attenuation of distant organ damage. Evidence from recent work suggests that these properties may not be exclusively attributed to stem cells. This study was designed to evaluate the immunomodulatory potency of cellular treatment during acute inflammation in a model of sublethal endotoxemia and to investigate the hypothesis that immunomodulations by cellular treatment during inflammatory response is not stem cell specific. METHODOLOGY/PRINCIPAL FINDINGS: Endotoxemia was induced via intra-peritoneal injection of lipopolysaccharide (LPS) in wild type mice (C3H/HeN). Mice were treated with either vital or homogenized amniotic fluid stem cells (AFS) and sacrificed for specimen collection 24 h after LPS injection. Endpoints were plasma cytokine levels (BD™ Cytometric Bead Arrays), T cell subpopulations (flow-cytometry) and pulmonary neutrophil influx (immunohistochemistry). To define stem cell specific effects, treatment with either vital or homogenized human-embryonic-kidney-cells (HEK) was investigated in a second subset of experiments. Mice treated with homogenized AFS cells showed significantly increased percentages of regulatory T cells and Interleukin-2 as well as decreased amounts of pulmonary neutrophils compared to saline-treated controls. These results could be reproduced in mice treated with vital HEK cells. No further differences were observed between plasma cytokine levels of endotoxemic mice. CONCLUSIONS/SIGNIFICANCE: The results revealed that both AFS and HEK cells modulate cellular immune response and distant organ damage during sublethal endotoxemia. The observed effects support the hypothesis, that immunomodulations are not exclusive attributes of stem cells

    Single-Molecule Electrochemical Transistor Utilizing a Nickel-Pyridyl Spinterface

    Get PDF
    Using a scanning tunnelling microscope break-junction technique, we produce 4,4′-bipyridine (44BP) single-molecule junctions with Ni and Au contacts. Electrochemical control is used to prevent Ni oxidation and to modulate the conductance of the devices via nonredox gatingthe first time this has been shown using non-Au contacts. Remarkably the conductance and gain of the resulting Ni-44BP-Ni electrochemical transistors is significantly higher than analogous Au-based devices. Ab-initio calculations reveal that this behavior arises because charge transport is mediated by spin-polarized Ni <i>d</i>-electrons, which hybridize strongly with molecular orbitals to form a “spinterface”. Our results highlight the important role of the contact material for single-molecule devices and show that it can be varied to provide control of charge and spin transport

    Investigation of the dynamics of constructions made of composite materials by means of the method of superelements

    No full text
    • …
    corecore