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interface for energy storage: Insights from in-situ
Raman spectroelectrochemistry
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TX 78539, USA

(Received 10 March 2018; accepted 19 June 2018; published online 29 June 2018)

Hybrids consisting of supercapacitive functionalized graphene (graphene oxide; GO
reduced graphene oxide; rGO multilayer graphene; MLG, electrochemically reduced
GO; ErGO) and three-dimensional graphene scaffold (rGOHT; hydrothermally pre-
pared) decorated with cobalt nanoparticles (CoNP), nanostructured cobalt (CoO and
Co3O4) and manganese (MnO2) oxide polymorphs, assembled electrochemically
facilitate chemically bridged interfaces with tunable properties. Since Raman spec-
troscopy can capture variations in structural and chemical bonding, Raman spectro-
electrochemistry in operando i.e. under electrochemical environment with applied bias
is employed to 1) probe graphene/metal bonding and dynamic processes, 2) monitor
the spectral changes with successive redox interfacial reactions, and 3) quantify the
associated parameters including type and fraction of charge transfer. The transverse
optical (TO) and longitudinal optical (LO) phonons above 500 cm−1 belonging to
Co3O4, CoO, MnO2 and carbon-carbon bonding occurring at 1340 cm-1, 1590 cm−1

and 2670 cm-1 belonging to D, G, and 2D bands, respectively, are analyzed with applied
potential. Consistent variation in Raman band position and intensity ratio reveal struc-
tural modification, combined charge transfer due to localized orbital re-hybridization
and mechanical strain, all resulting in finely tuned electronic properties. Moreover, the
heterogeneous basal and edge plane sites of graphene nanosheets in conjunction with
transition metal oxide ‘hybrids’ reinforce efficient surface/interfacial electron transfer
and available electronic density of states near Fermi level for enhanced performance.
We estimated the extent and nature (n− or p−) of charge transfer complemented
with Density Functional Theory calculations affected by hydration and demon-
strate the synergistic coupling between graphene nanosheets and nanoscale cobalt
(and manganese) oxides for applied electrochemical applications. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5028412

I. INTRODUCTION

Intense research and development in clean and sustainable energy sources are stimulated by
increasing global demand of electrical energy for portable electronics and mobile technology.

aAuthor to whom the correspondence should be addressed. E-mail: sanju.gupta@wku.edu.
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While solar and wind energy sources are intermittent, a continuous plentiful and large scale electrical
energy supply will only be possible if inexpensive storage and conversion systems are developed.
Of primary interest to us in recent years have been electrochemical energy conversion and stor-
age devices including supercapacitors, pseudocapacitors and batteries, which represent efficient and
environmentally benign technologies. Each of these systems as described in Ragone plot offers dif-
ferent characteristics in terms of specific power and energy densities.2 For instance, rechargeable
secondary Li-ion batteries can have high energy densities with low power densities and electrochem-
ical supercapacitors can deliver very high power density with a lower stored energy than batteries,
but rapid charging/discharging, superior cycle lifetime and high reliability. Accordingly, superca-
pacitors are particularly appropriate for applications where high power is needed for a few seconds
(e.g. for power buffer, power saving units and energy recovery).1 They can complement Li-ion bat-
teries in applications where both high energy and high power delivery/uptake be achieved. These
characteristics originate from the driving mechanisms which govern how energy is stored in the
batteries and supercapacitors. Accordingly, the supercapacitors, known as electrochemical double
layer capacitors, store charge at the surface of the electrodes that is at the electrode-electrolyte inter-
face through reversible ion adsorption thus charging a ‘double-layer’ capacitance typically made
from carbon-based materials.2–4 This particular mechanism differentiates them from batteries, which
involves actual electron transfer in electrochemical redox reactions and resulting structural modifica-
tion due to Li-ion intercalation/de-intercalation to produce electrical energy. To increase the charge
storage capacity in supercapacitors, it is necessary to increase the electrodes surface area. While
there is no linear relationship between the surface area and the gravimetric specific storage capacity,
we employ innovative synthetic methods and strategic approaches to address challenges of achieving
both the high specific and specific power densities concomitantly. As a result, we consciously develop
‘hybrid’ supercapacitors or pseudocapacitors,5–8 which involves surface redox (Faradaic) reactions
like in batteries. The catalyst community is also drawn towards the development of these electro-
chemical electrodes as advanced electroanalytical platforms seeking potential game changers with
novel means of turning abundant materials into cost-effective active catalysts with favorable mech-
anistic pathways to extend lifecycle. It seems paramount that nanoscale materials with exceptional
electrochemical (re)activity, selectivity and stability are needed to meet the demanding performance
in renewable energy sector.9–11

Graphene, two-dimensional structure of carbon atoms packed into a dense honeycomb crystal,
has attracted a great deal of interest due its diverse and fascinating properties including high gravimet-
ric surface area (ca.2,630 m2/g), superior charge-carrier mobility (2x105 cm2/V.s), excellent tensile
strength 130 GPa, and thermal conductivity (4.84-5.30)x103 W/m.K.10,12 Of several methods,13 chem-
ical production of graphene is currently the lowest cost method and it is becoming a preferred method
for large-scale production, that are also used to produce graphene variants namely, graphene oxide
(GO), and chemical reduced GO (rGO) and electrochemical reduced GO (ErGO).11,14–16 Few-layer
GO nanosheets are lesser conductive as they contain significant number of oxygen-rich functional
groups favoring surface and edge decoration and abundant crystallographic defect densities.10 In
view of exceptional physical-chemical properties, the functional groups offer rich surface chem-
istry as they are considered ideal support for chemical bridging and molecularly anchoring various
metal and metal oxide nanocrystals to form high-performance functional nanocomposites as ‘hybrid’
supercapacitive electrodes.17–20 The manufacturing of such hybrids require that these metal oxide
nanoparticles be incorporated and homogeneously distributed on graphene nanosheets. Addition-
ally, the graphene supports (especially, rGO and ErGO) is promising for direct conductive path for
rapid electron transportation. Numerous studies have been reported in the last few decades related
to transition metal oxides including RuO2, V2O5, Fe3O4, MnOx and CoxOy as they represent the
most fascinating class of inorganic materials for wide ranging physical and chemical properties. The
growing interest in cobalt and manganese oxides stem from their emerging applications in solid
oxide fuel cell (SOFC) and heterogeneous catalysis. Similar to iron and copper, manganese (Mn2+,
Mn4+), vanadium (V2+, V3+, V5+) and cobalt (Co2+, Co3+ and Co4+) exhibit multiple oxidation states
and intermediate valences with charge ordering phenomenon. Moreover, their extraordinary capa-
bility to adopt several coordination and structures with tetrahedral, pyramidal to octahedral sites
makes them exceptionally attractive. Additionally, various dimensionalities (1D, 2D or 3D) allow
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great flexibility of the oxygen framework such that non-stoichiometry (oxygen vacancies) in these
compounds is crucial for tunable physical and chemical properties. The electronic structure of Co,
V and Mn as compared with other 3d metals is a complex topic due to various spin states. The
physicochemical properties of oxide polymorphs are coupled with structural transitions with a high
complexity involving electronic (or possibly electrochemical) phase separation phenomenon. One of
the other common ways of prevailing valence state is the disproportionation reaction: 2Co3+ ←→

Co2++Co4+, which plays a profound role in the electrical conduction and other physical/chemical
properties. The interest in electrode materials based on these metal and metal oxides for superca-
pacitors (or pseudocapacitors) is due to environmental benign nature, abundance and theoretical
capacitance besides coexistent specific energy and power densities characteristics, long cycle life,
wider potential window, good thermal operating range and low maintenance cost.10,11,21–24 There-
fore, hybrids based on nanostructured Co and Mn oxide polymorphs onto graphene supports provide
an excellent model for in-situ Raman spectroelectrochemistry investigations, not so abundant in the
literature. Alternatively, multifunctional hybrid electrodes assembled with strongly coupled organic
(nanocarbon)−inorganic interfaces promote effective surface charge transfer and faster electron/ion
transport (charging−discharging).10,11,25–27

At a fundamental level, the electrode-electrolyte interface is the energy storage system that
defines the performance of diverse electrochemical devices with applications related to energy (con-
version and storage), water (purification and remediation), catalytic (hydrogen and fuel cell), and
(bio)chemical sensing. Thus fabrication of optimized architectures having suitable functionality
requires the ability to control the interfacial composition and molecular interaction between the
micro-constituents. Hence, structural characterization is fundamental and active area needed for
structural optimization for applied electrochemistry. Nevertheless, the interfaces are generally less
amenable to standard surface-science characterization methods, making the surface activity investiga-
tion at nanoscale challenging. The prediction of properties requires identifying and quantifying salient
structural characteristics, while gaining insights into the relevant mechanisms those can be achieved
through in-situ observations of structural evolution. In our previous work, we reported detailed study
of the synthesis, microstructure and electrochemical properties of graphene-family nanomaterials dec-
orated with cobalt nanoparticles, cobalt oxide and manganese oxide polymorphs.11,22 Using novel
synthetic approaches, we facilitated chemical bridged interfaces via electrodeposition10,11,22,28 and
there-dimensional scaffolds by hydrothermal (HT) method.10,11,29 We demonstrated that Co3O4-
based hybrids on electrochemically reduced graphene oxide (ErGO), on multilayer graphene (MLG)
and with rGOHT and nanostructured MnO2 on GO are capable of delivering maximum gravimet-
ric specific capacitance (Cs) > 550 F.g-1 at discharge current density 10 A.g-1. We attributed these
remarkable findings to (a) interplay of open pore graphene network beneficial to ion diffusion and
transport kinetics, (b) topologically multiplexed highly conductive pathways provided by MLG,
ErGO and rGOHT support to ensure rapid transfer and electron/ion conduction (< 10 ms) and (c)
optimized loaded inorganic nanomaterials on graphene nanosheets prohibiting aggregation. Compu-
tational simulations via periodic density functional theory (DFT) with and without transition metal
adatoms on graphene and GO sheets were performed to synergize and complement experimental
work. Beyond the encouraging results we reported and the limitations observed, fundamental mech-
anistic understanding of energy storage (ion adsorption, electron transport and charge transfer) in
organic-inorganic hybrids has yet to be established.

Among various complementary techniques (i.e. X-ray diffraction, electron microscopy, optical
spectroscopy, neutron scattering), vibrational spectroscopy provides unique structural information at
a molecular scale. Raman spectroscopy (RS), a simple and nondestructive surface-sensitive inelastic
light scattering technique, proved to be versatile for a vast array of carbon-based nanomaterials and
found to be responsive to the state of chemical bonding for metal oxides, with the Raman frequencies
being dependent on the metal oxidation state. Moreover, microphases observed under the microscope
allow the characterization of structural phase transitions and identification of polymorphic forms.
Since the Raman probe is capable of studying highly localized volumes with dimensions comparable
to the grain size, they become significant for nanoengineered electrochemical electrodes. In addition,
the use of Raman imaging enables to map accompanying electrochemical bias-induced transformed
zones and microscale homogeneity through the observation of specific vibrational modes. To promote
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such developments, the in-situ Raman spectro-electrochemistry investigations of graphene-transition
metal oxides ‘hybrids’ are reported. The nanostructured transition metal oxides including manganese
and cobalt oxide polymorphs decorated graphene-family nanomaterials (GFNs) form viable frame-
works for rationalizing the electrochemical activity trends via probing lattice vibrational structure
under applied bias providing fundamental underpinnings of charge transfer dynamics and elucidating
structural stability in carbon-metal-oxygen triad electrochemistry. The experimental findings com-
plemented with density functional theoretical calculations can be predictive for expansive rational
design of compositional interfaces and reactivity space for next-generation ‘hybrid’ electrodes and
sensing platforms. The combined experimental and theory provides a wealth of new information
about the physical-chemical processes at solid/liquid interfacial reactions and constitutes the key
findings that helps to quantify structure-property-(re)activity relationships (qSPARs).

II. EXPERIMENTAL

A. Materials and methods

The electrodeposition method of graphene-based hybrids, surface morphology using scanning
electron microscopy, surface binding energy using X-ray photoelectron spectroscopy and theoretical
calculations using Density Functional Theory (DFT) are provided in the supplementary material.

Raman spectroscopy (RS) was performed to obtain the lattice vibrations at various points on the
nanostructured transition metal oxides decorated graphene nanosheets hybrids. To acquire Raman
spectra, a micro-Raman spectrometer (Model InVia; Renishaw, UK) equipped with an excitation laser
of wavelength 633 nm (EL = 1.92 eV) and∼0.5−2 mW incident on the sample, with edge filters cutting
at ∼100 cm-1 was used. The Raman light from the sample was collected in backscattering geometry,
transmitted by a beam splitter, and detected by a CCD camera with an integration time of 60−600 s.
A 2µm spot size was obtained using an objective lens of x50. An edge filter removed the laser excita-
tion, filtering the reflected light then sent to a spectrometer. Extreme care was taken to avoid sample
damage caused by laser induced thermal degradation. Raman shift ranged 200 cm-1−3400 cm-1

for Co containing hybrids, while for cobalt oxide and manganese polymorphs, the shift was kept
between 100−800 cm-1 and for GO, rGOHT, ErGO, and MLG it was kept between 1150−3200 cm-1

with spectral resolution 1 cm-1. The in-situ Raman spectro-electrochemical experiments were con-
ducted to obtain insights into the charge transfer dynamics and energy storage mechanisms of the
graphene-inorganic hybrids. We specifically custom-made two-electrode electrochemical cell inte-
grated with Raman microscope in addition to long working distance objective lens 100x (Model
Leica) which allowed to monitor Raman spectra in operando experimental conditions (see Fig. 1

FIG. 1. Schematic of the experimental setup of in-situ Raman spectro-electrochemistry: counter, reference, and working
electrodes in a single-compartment electrochemical cell and other accessories.

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-087806


065225-5 Gupta et al. AIP Advances 8, 065225 (2018)

schematic). Since the spectra were recorded using a long working distance, the probed area was
about 3 µm2. The spectrometer slits were set at 100 µm, resulting in a resolution of ∼1.0 cm-1

and uncertainties of 0.05 cm-1 or smaller in peak positions. The Raman spectra were collected in
spectral window of 300–800 cm-1, 1100–1800 cm-1 and 2450–2850 cm-1 under applied electro-
chemical potential with interval 0.1V in amperometric mode from −0.2V to +0.8V for cobalt-based
(from −0.9 to +0.9V for MnOx-based) hybrids. The PTFE cell was fixed and contained the counter
electrode (Pt wire of 3mm diameter), reference electrode (Ag/AgCl 3MKCl saturated) and work-
ing electrode (samples) immersed in electrolyte 0.5M KOH for cobalt-based (in 0.1M Na2SO4 for
MnOx−based) oxides. The illuminating light was focused after each measurement to keep the level
of intensity same throughout the experiments. The Raman spectra were measured at the end of
each potential step, after waiting for the current to fall below 1µA to ensure quasi-equilibrium
conditions. For each electrode, it was cycled for at least one full cycle to assess the reversibility
of the charge transfer and storage capacity in cyclic voltammetry (CV) mode at 100 mV sweep
rate. All of the chemicals were analytical grade and the electrolyte solution is prepared using DI
water. Furthermore, Raman mapping was also measured at potentials 0.3V and 0.4V depending on
the sample, measuring the corresponding Raman spectral variation over 20x20 µm2. The spectra
were fitted using in-built Raman spectrometer software Wire v.4.2 based on Marquardt–Levenberg
method.30

III. RESULTS AND DISCUSSION

A. Surface characterization

Figure 2 shows SEM images of electrodeposited Co3O4, Co3O4/ErGO, CoO, CoO/ErGO,
CoO/rGO, CoNP, CoNP/MLG, GO, rGO, MnOx, MnOx/GO MnOx/rGO and hydrothermal syn-
thesized Co3O4/rGOHT samples. They reveal relatively uniform surface morphology, where inter-
connected three-dimensional (3D) network and crumpled silk-like graphene nanosheets (GNS)
optimally decorated with nanocrystalline CoxOy, CoNP and MnOx is apparent. The lateral size
of micro/nanoparticles ranged between 50−100 nm and electrodeposition takes place preferentially
at edges or on nanowalls of GNS that prevents their re-stacking. For the hydrothermal samples,
many stacked nanoplatelets and scrolled GNS are observed (not shown, see Ref. 11). It is con-
ceivable that below a critical areal density of nanostructured transition metal oxides, the GNS may
aggregate decreasing the available specific surface area for ion adsorption and in turn charge stor-
age capacity. Since electrochemical processes and electrocatalytical reactions mainly occur on the
surface/interface, it is useful to investigate the surface signatures. The binding energies of core elec-
trons measured are sensitive to chemical and structural properties of their solid-state environment.31

Figure 3 shows wide scan XPS spectra of as-synthesized ErGO, CoO/ErGO, CoNP/MLG,
Co3O4/ErGO and Co3O4/rGOHT confirming the existence of C, O and Co elements in hybrid elec-
trodes. XPS core level C1s (282-300 eV), Co2p (775-800 eV) and O1s (528-540 eV) elemental
spectra provide surface chemical composition. Peak fitting using Voigt functions was accomplished
to identify oxygenated functional groups considering their binding energy location in hybrids.32 The
C1s spectrum of ErGO exhibited four peaks centered at positions 284.9, 287.9, 292.5 and 295 eV
assigned to C-C//C=C, C-O, C=O, C-OH/O-C=O, -COOH, respectively and shake-up satellite peaks.
As seen in Fig. 3, −C=O (287.9 eV) and C−C (284.9 eV) bonds are formed and increase with cobalt-
based compounds, as well as carbonate (CO32-) (295 eV) at higher thickness. These groups are also
typical of MLG, GO and rGO which can form epoxide (C−O−C), hydroxyl (−OH), carbonyl (C=O)
and carboxyl (−COOH) groups both on the basal plane and at edge plane sites. Peaks of the C1s
spectrum of various hybrid nanomaterials studied were found at similar position as for ErGO, but
the C/O proportions were different. For instance, some oxide groups (C=O and C−OH) are present
in lower concentration in MLG than those of GO, rGO and ErGO, which can be attributed to native
oxidation and/or adsorbed water molecules. From the peak intensities of the O1s core level (531 eV)
spectrum, the −OH group forming at higher Co thickness are not only due to C−OH bonding, but
also it occurs due to formation of Co[OH]2 or divalent ionic state of Co2+. Therefore, Co 2p XPS
spectrum is examined further in detail (see Fig. 3). There may also be a contribution from cobalt
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FIG. 2. Scanning electron microscopy images of representative electrodeposited graphene-based hybrid samples consisting
of graphene-family nanomaterials and (a-h) cobalt–oxide polymorphs (Co3O4 and CoO) and (i-m) manganese oxide (MnOx).
These images are falsely colored to emphasize individual components as labeled. (Scale bars are shown at the bottom of the
images).

oxides at the O1s peak in the spectral range 531−534 eV. The spectrum contains three main peaks
at 531.1, 532.6, and 533.8 eV attributed to Co−O (metal-oxygen) and Co−O−H, H−O−H and O−C
(reduction), respectively. Typically, the oxygen content increase is proportional to the thickness of
electrodeposited cobalt oxides.

Figure 3 also shows two Co 2p peaks relating Co 2p1/2 (∼795 eV) and Co 2p3/2 (∼780 eV) spin-
orbit peaks. To probe the electronic states, the Co2p spectra in hybrids were fitted for deconvolution,
in which the two peaks have different oxidation states which are Co 2p3/2 having Co3+ (ca. 780.6 eV)
and Co2+ (ca.778.9 eV) states. Comparison of Co/Gr/Cu samples with Co islands to Co[OH]2 ref-
erence shows good agreement with the lineshape and charge transfer satellites which are typical
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FIG. 3. (a) Typical XPS survey spectra (0–1000 eV) for one of the representative graphene-based hybrid samples consisting of
graphene-family nanomaterials and cobalt oxide polymorphs and CoNP depicting the dominant elemental C1s peak (284.5 eV)
along with the O1s (531.0 eV) and Co2p (780.0 eV) peaks. Also shown are high-resolution XPS spectra for (b) C1s (c) Co2p
and (d) O1s core level peaks.

for Co2+ spectra.33 The Co 2p3/2 and Co 2p1/2 peak exhibit an energy splitting (∆E = 16.1 eV)
also consistent with Co2+ state.34,35 The ratio Co2+/Co3+ in Co3O4-based hybrids are calculated
to be 3.1 indicating Co2+−rich phase. This result suggests that surface oxygen vacancies are gen-
erated during electrodeposition which can be confirmed by fine-scanned O1s XPS spectra. The
spectrum of cobalt nanoparticles (CoNP) is somewhat shifted, which is attributed to a superposi-
tion of Co0 and Co2+ signals in ratio 3:7. It should be noted there exists shift of Co2+ features
between thin and thick Co layers. The presence of Co 2p3/2 peak at 780.6 eV for thin Co,
blue shift (782.1 eV) is observed for thicker Co (e.g. Co3O4/rGOHT), causing 2p3/2,1/2 splitting
reduced to 14.6 eV. This observed shift in Co2+ feature to higher energy is consistent with ini-
tial formation of mostly CoO phase, partially converting to Co[OH]2 which has marginally higher
binding energy.36 At lower Co thickness, the Co islands form primarily CoO with no evidence
of metallic Co and for thicker Co the bottom layers in contact with the graphene (MLG) surface
remain metallic Co and in contact with functionalized graphene (GO, rGO, ErGO) forms cobalt
oxides.

Micro-Raman spectroscopy (RS) is used for lattice vibrational bonding characterization.
Figures 4a–4h display Raman spectra in the spectral region 150–3100 cm-1 for representative
Co3O4, CoO, CoNP, Co3O4/MLG, Co3O4/ErGOanneal, Co3O4/ErGOl, Co3O4/rGOHT, CoNP/MLG,
CoNP/ErGO, CoO/rGO, MnOx/rGO and MnOx/GO samples along with GO and rGO nanosheets.
For a realistic comparison, the spectra are normalized to intense band at ∼1595 cm-1. Keeping in
view of microscopic structure-property correlations, the features in Raman spectra are quantitatively
analyzed and summarized elsewhere.10,20,22–24,37 The barely visible peaks appeared for nanoparticle-
decorated graphene samples and the increase in intensity ratio of D to G band strongly suggests
that defects are formed at the interface between the metal oxide nanoparticles and graphene during
electrodeposition. Here we provide description relevant for the current in-situ study. In Figs. 4a,
4c, 4f and 4h, the peaks at 188, 460, 515, 630 and 676 cm-1 are assigned to F2g, Eg, F2g and A1g
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FIG. 4. Micro-Raman spectra excited at λL = 633 nm (EL = 1.92 eV) in 120–3200 cm-1 spectral window of (a) cobalt
oxide polymorphs and CoNP constituents, representative (b-g) electrodeposited and hydrothermal deposited graphene-based
hybrids (Co3O4/MLGNiFoam, Co3O4/ErGOanneal, Co3O4/ErGO, Co3O4/rGOHT, CoNP/MLG, CoNP/ErGO and CoNP/rGO
showing characteristic peaks associated with (c) cobalt oxides and (d) (D, G, 2D and D+G bands) associated with graphene
nanosheets and (h) graphene-based hybrids (MnOx/GO, MnOx/rGO) along with bare carbon cloth substrate, GO and rGO
depicting characteristic peaks.



065225-9 Gupta et al. AIP Advances 8, 065225 (2018)

symmetry modes, respectively, for CoxOy and CoNP.10,44 The difference in the band position for
CoO (rock salt), CoNP (hexagonal close packed) and Co3O4 (normal spinel structure with Co2+ in
tetrahedral and Co3+ in octahedral interstices) is attributed to the crystal structure and level of oxy-
gen or more appropriately, the elemental ratio i.e. C to Co and Co to O. Likewise, Raman spectra
for MnO2/GO and MnO2/rGO hybrids consist of collective vibration mode associated with MnO2

octahedron.38,44 In our data, MnO2 has three features at ∼440 cm-1 and feeble doublet ∼585 cm-1

and ∼640 cm-1. The band at ∼585 cm-1 observed in Ref. 39 is assigned to Mn-O lattice vibration in
MnO2, which is in good agreement with the bulk tetragonal MnO2 phase.24,40,41 The band 650 cm-1

has E1g symmetry where the stretching mode of O-Mn–O bond in MnO6 octahedral shared by corners
and/or edges in its rutile or open crystal structure with “channels”.40,41 The peak at lower wavenum-
ber correspond to the deformation modes of the metal–oxygen chain of Mn–O–Mn in the octahedral
lattice. As the manganese atom is about five times heavier than the oxygen atoms, the vibrations of the
Mn–O groups are supposed to involve mainly the oxygen atoms. The characteristic diagnostic peaks
for graphene are centered at ∼1360 cm-1 (disorder-induced D band arising due to breathing mode
of aromatic rings with six fold A1g symmetry) and ∼1595 cm-1 (in-plane stretching or tangential
G band having E2g2 symmetry at Brillouin zone center). The other peaks of interest include second-
order peaks at 2670 cm-1 and 2920 cm-1 assigned to 2D band (involves phonons near the K point)
and combination D+G band, respectively (see Figs. 4b, 4d, 4e 4g and 4h).42–44 All of the structural
characterization indicate strong coupling between GNS and nanostructured cobalt and manganese
oxides. The Raman spectra also confirmed a weak interfacial charge transfer ex situ, which has strong
influence on electrochemical reactivity.10

First we briefly discuss cyclic voltammetry (CV) and then in-situ Raman spectroscopy results in
detail. The CV measurements were carried out to define the redox potential of cobalt and manganese
ions onto graphene as working electrodes in 0.5M KOH and 0.1M Na2SO4 electrolytes, respec-
tively. To determine pseudocapacitive contribution within hybrid electrodes, we also characterized
exclusively supercapacitive graphene electrodes. Figure 5a shows cyclic voltammograms exhibit-
ing redox peaks in the potential range −0.2V - +0.8V. The CVs from graphene derivatives is in
stark contrast to hybrids which is nearly rectangular loop indicative of almost an ideal supercapac-
itor (see also Ref. 10). Specifically, all hybrid electrodes displayed well-defined pseudocapacitive
behavior with two sets of characteristic redox peaks centered at -0.15/+0.01 V (cathodic I/anodic II)
and +0.2/+0.4 V (cathodic III/anodic IV) related to Faradaic (redox) reactions relating the conver-
sion between different cobalt oxidation states: oxidation of Co(II) to Co(III) and Co(III) to Co(IV)
following:10 Co3O4 + OH− + H2O↔ 3CoOOH + e− (1), CoOOH + OH−↔ CoO2 + H2O + e− (2)
and 3CoO + H2O ↔ 3Co3O4 + H2 (3). Likewise, Fig. 5b shows the CV curves for GO, rGO,
MnOx/rGO and MnOx/GO measured in 0.1M Na2SO4 electrolyte in -0.9V − +0.9V potential
range. The CV curves for all the electrodes show nearly rectangular shape and characteristic
mirror-image with redox peaks at +0.15V and +0.45V. The reactions corresponding to charge-
discharge is the proton insertion following: MnO2 + xH2O + xe− →MnO2 - x(OH)x + xOH - +e− (4)
and MnOa(OH)b + xNa+ + yH+ + (x + y)e - ↔MnOa-x-y(ONaxHy)b+x+y (5) , the variables x and y
indicate the number of electron equivalents that have reacted per Mn atom.45 The reduction of
Mn4+ to Mn3+ is accompanied by a proton insertion into the MnO2 tunnel structure, x is also
the number of protons inserted. At the endpoint x+y=1 and α-MnOOH is formed. The synergis-
tic effects of chemical bridging make use of electrostatic and chemical coordinated interactions
between negatively charged functional groups of GO, rGO, ErGO and Co2+ (and Mn3+) ions archi-
tectures, promoting tailored interfaces and tunable physical properties.10,11,46 These results suggest
that the graphene nanosheets for hybrid electrodes not only improved the electrical conductiv-
ity and mechanical stability, but also elucidate functional charge transfer-like dopants to or from
cobalt-based and Mn-based nanomaterials,23,24 which are now investigated by in-situ micro-Raman
spectroscopy.

B. In-situ Raman spectroscopy studies

In-situ Raman spectroscopy characterization are carried out to gain further insights into funda-
mental underpinning of physico-chemical processes, dynamical charge transfer and energy storage
mechanisms for graphene-based hybrids, yet to be established.
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FIG. 5. Cyclic voltammograms (CV) of (a) Co3O4, CoO and CoNP based hybrids measured in 0.5M KOH and (b) of
MnOx-based hybrids in 0.1M Na2SO4 showing pseudocapacitive behavior. The inset shows CV plot of Co3O4/MLGNiFoam
hybrid.

1. Graphene hybrids with nanostructured cobalt and manganese
oxide polymorphs and cobalt nanoparticles

Assignment of the vibrational features in the Raman spectrum is carried out following Refs. 23
and 24. Prior to beginning in-situ experiments, we made an attempt if there was any change in the
prominent Raman bands position and intensity when the electrodes are immersed in aqueous elec-
trolyte. Figure 6 (panels a–e) shows deconvoluted Gaussian and Lorentzian lineshape analysis for
representative examples. The Raman spectra remained almost unchanged under zero electrochem-
ical bias except some loss in the Raman intensities that may originate from light scattering by the
electrolyte solution. Figure 7 displays representative in-situ spectral evolution with bias for Co3O4

(Fig. 7a), Co3O4/ErGO (Fig. 7b–7d), multilayer graphene (MLG) (Fig. 7e), Co3O4/MLG (Fig. 7f–7h)
from −0.2V to +0.8V, and MnOx/GO (Fig. 7i–7j) from −0.9V to +0.9V, with respect to Ag/AgCl
reference electrode. Raman spectra are normalized with respect to G band in the corresponding elec-
trolytes. High applied bias (> +1V) were avoided because it can (a) produce tiny bubbles at the
working electrode surface, which can hardly be seen by the unaided eye and may hamper inelastic
light scattering collection and (b) degrade samples leading to delamination and cracking assisted by
gas (H2 and O2) nanobubbles.

Physically speaking, when the electrodes are electrochemically polarized (either anodic or
cathodic) the primary effects to be considered from Fig. 7 (and Figs. S1 and S2, supplementary mate-
rial) are: (i) this process either softens or hardens the carbon-carbon bonding (dC–C), which affects the

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-087806
ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-087806
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FIG. 6. Line shape analysis of characteristic Raman bands for two representative samples (a-c) Co3O4/MLG in 0.5M KOH
aqueous electrolyte for applied potentials 0.0 V and +0.2 V and (d, e) MnOx/GO in 0.1M KOH aqueous electrolyte for applied
potentials 0.0 V and +0.4 V, vs. Ag/AgCl. The Raman spectra in air are also shown.

vibrational modes frequencies and subsequently alters the corresponding intensities of modes during
early stages of charging/discharging, (ii) changes in the oxidation state of transition metal leading
to structural modification, (iii) possible charge compensation of Mn3+ inducing a reduced state due
to K+, Na+ and H+ ions adsorption, (iv) solvation and hydration of graphene surface and nanostruc-
tured metal oxide nanoparticles due to intercalation of water molecules and electrolyte ions and (v)
interfacial charge transfer resulting in band occupation (n-type) or depletion (p-type) resulting in
shifts in Fermi level position. The first effect has some analogy with nanomaterials under hydro-
static pressure affecting the intensity and frequency of prominent Raman bands in carbon nan-
otubes, for example.4 With these effects in mind, we analyzed the Raman spectro-electrochemical
data.

Qualitative inspection of Fig. 7 and Figs. S1 and S2 (supplementary material) reveals the follow-
ing noteworthy features: (a) decrease in D, G and 2D bands intensities especially at higher potentials,
(b) changes in Raman intensities and frequency of Co- and Mn-related bands at intermittent potentials,
(c) broadening or even disappearance of some Raman bands accompanies the appearance of some
new bands, (d) overlap of G band with D’ band that becomes active due to defects, and (e) reduction
of GO and other charging/discharging process which is a quasi-reversible process, i.e. the changes
occurring at cathodic potential excursion are not absolutely mirrored at anodic potential excursion.
Figure 6 shows representative examples of the line shape analysis at two different potentials 0.0V
and +0.2V (or +0.4V) vs. Ag/AgCl for Co- and Mn-based electrodes, respectively. In addition to the
decrease in intensities, the number of bands required to fit with Gaussian or Lorentzian lineshape
varied by at least by one band with applied potential.

It is challenging to interpret the generated data because both the cobalt and manganese-based
oxides are complex materials by themselves, let alone when interfaced with multifunctional graphene-
family nanomaterials in alkaline and salt solution environment in operando conditions. Nevertheless,
we discuss the electrochemical potential dependent Raman spectral signatures and provide unprece-
dented information through detailed quantitative analysis. Figures 8–10 provide the summary of
various parameters from analyzing in-situ Raman spectra with applied electrochemical potential. The
variation of Co- (F2g at 658 cm-1; A1g at 754 cm-1) and Mn-related (A1g at 640 cm-1) high frequency
longitudinal optical (LO) modes with potential for Co3O4/ErGO, Co3O4/MLG, Co3O4/rGOHT, CoO,

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-087806
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FIG. 7. Shown are in-situ Raman spectra for (a) Co3O4, (b-d) Co3O4/ErGO, (e) MLG, (f-h) Co3O4/MLG and (i, j) MnOx/GO
excited with laser radiation wavelength λL= 633 nm (EL = 1.92 eV) in aqueous 0.5M KOH (and 0.5M Na2SO4) electrolytes
as a function of applied potential relative to reference electrode from -0.2 to +0.8 V (and from -0.9 to +0.9V) in steps of 0.1 V
from top down depicting the change in the intensity and position of various Raman bands associated with graphene and cobalt
(and manganese) oxides.
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FIG. 8. Variation in frequency position (a) ωCo pk1 peak and ωCo pk2 peak for Co3O4, Co3O4/ErGO, Co3O4/MLG,
Co3O4/rGOHT, CoO, CoO/ErGO and CoO/rGO and (b) ωMn peak for MnO2/GO and MnO2/rGO with electrochemical
potential relative to reference electrode. The error bars in band position are within ± 1 cm-1.

CoO/ErGO and CoO/rGO, MnOx/GO and MnOx/rGO ‘hybrid’ supercapacitive cathodes is shown in
Fig. 8A and 8B, respectively. In general, the A1g band position decreases from 765 cm-1 to 720 cm-1

with increasing potential from +0.2V to +0.8V and to 740 cm-1 at -0.2V from 0V for Co3O4/ErGO
electrodes. For most of the other Co-based samples studied the A1g frequency varied from 720 cm-1

to 700 cm-1 for positive potential and almost unchanged at 720 cm-1 in the negative potential. As for
F2g mode in CoO, it varied between 690-695 cm-1 from 0.2 to +0.8V and it changed from 670 cm-1

to 630 cm-1 until +0.5V and then increased to 657 cm-1 at +0.7V with slight decrease to 650 cm-1 at
+0.8V for Co3O4/rGOHT. Conversely, for CoO-based hybrid samples, the F2g mode position increases
from 630 cm-1 to 650 cm-1 from 0V until +0.4V and then decreased to 630 cm-1 and 620 for CoO,
CoO/ErGO (or 610 cm-1 for CoO/rGO) at +0.8V. The same band position increases from 630 cm-1

to 648 cm-1 from 0V to -0.2V. The origin of F2g band in CoO can arise from Co3O4 due to partial
oxidation, structural defects and impurities.47 The weaker albeit visible TO phonon at 680 cm-1 and
at lower wavenumber (660 cm-1) come from untreated CoO and corresponding hybrids, respectively.
Likewise, the position of E1g band for MnOx/GO and MnOx/rGO fluctuated for both positive and
negative potentials from 647 cm-1 to 635 cm-1 at +0.4V, from 637 cm-1 to 628 cm-1 at +0.6V, from
647 cm-1 to 635 cm-1 at -0.2V, then from 628 cm-1 to 624 cm-1 at -0.4V and gradually start to increase
to 632 cm-1 at -0.9V.

In general, the metal and metal oxides adatoms themselves affect the electronic and structural
changes. The ability of Co and Mn to adopt lower crystalline configurations such as tetrahedral
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FIG. 9. Variation in intensity ratio of D to G band (ID/IG) and 2D to G band (I2D/IG) for (a, b) Co3O4, Co3O4/ErGO,
Co3O4/MLG, Co3O4/rGOHT, CoO, CoO/ErGO and CoO/rGO and (c) MnO2/GO and MnO2/rGO ‘hybrid’ electrodes with
electrochemical potential relative to reference electrode. The error bars in band position are within ± 1 cm-1.

configuration points at the oxygen vacancies that plays major role in crystal chemistries of cobaltites
and manganites. Moreover, it is likely that oxidized cobalt contain mixed Co3O4 and CoO phases
and the phonon frequencies depended upon the nanostructure size and distribution particularly when
deposited on functionalized graphene (ErGO, GO, rGO or rGOHT). Bearing in mind of the above
mentioned results, it is of great interest to compare the structural evolution with electrochemical
potential for distinctive Co- and Mn-based systems. Structural distortions are related to the changes
in the Co−O and Mn−O bond lengths and Co−O−Co and O−Co−O bond angles, where the devia-
tion from O−Mn−O is related to the MnO6 octahedron distortion which is much more systematic in
contrast to those associated with Co-O bonding. Furthermore, for MnOx/GO (MnOx/rGO) samples,
the peak at 640 cm-1 related to Mn-O bond decreases to ∼625 cm-1 (∼620 cm-1) at the highest nega-
tive potential -0.9V and to ∼630 cm-1 (∼615 cm-1) at the highest positive potential of +0.9V. While
different crystalline phases (or lattice structures) of transition metal oxides studied with aqueous elec-
trochemical environment can be identified from these observations, it becomes apparent that there
may be different degrees of freedom for the vibrational O-H mode due to the presence of various
phases of transition metal oxides. For example, the peak shifts and the broadening of peak at 640 cm-1

in MnOx–based hybrids indicate structural distortions complies with the presence of γ-MnO2 struc-
tural phase observed from Fourier transform infrared spectroscopy.45 It has marketable presence
since it is an electrochemically active material and used popularly in alkaline batteries (primary and
rechargeable versions), in pagers and photoflash sectors. It is also believed that after insertion of pro-
tons from aqueous electrolyte per γ-MnO2, the γ-MnOOH phase forms rapidly, which is the spinel
precursor closely follows the bias dependent behavior. As a result of proton insertion, the frequency
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FIG. 10. Variation in frequency position of 2D band (ω2D) versus G band (ωG) for (a) Co3O4/ErGO, Co3O4/MLG,
Co3O4/rGOHT (b) CoNP/MLG, CoO/ErGO, (c) negative bias window (from -0.9 to 0 V) and (d) positive bias window
(from 0 to 0.9V), for MnOx/GO and MnOx/rGO, with electrochemical potential relative to reference electrode. The error bars
in band position are within ± 1 cm-1.

is shifted to lower frequency that expands the unit cell. The proton insertion starts as a single-phase
reaction, with protons are inserted into the 2 x 1 tunnels of layered structure. The first evidence of
MnOOH phase was due to a diffuse peak at ∼649 cm-1 and a more pronounced peak at ∼625 cm-1. It
is after the formation of MnOOH phase followed by lattice shearing, the carrier concentration is con-
tinually adjusted depending upon the surface coverage and nanosize as discussed. Likewise, cobalt
oxide polymorphs, though weakly electroactive by themselves, becomes active when integrated with
graphene and other nanocarbons. They are explored for electrochemical sensing and as advanced
noble-metal free electrocatalytic platforms.10,11

Other aspect of the analysis is the variation in intensity ratio of D and 2D bands with G band
(ID/IG and I2D/IG), shown in Figs. 9a–Fig. 9c, for both the cobalt− and manganese–based hybrids
which They appear to be quasi−parabolic with applied bias similar to those observed for strain/stress
dependence and in electrocapillary measurements on activated carbon and exfoliated graphite elec-
trodes.48 The ratio ID/IG gives a measure of aromaticity, lattice defects and restoration of graphitic
domains (degree of reduction) from GO. In other words, GO reduction yielding rGO should lead to
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increase in ID/IG ratio. It is worth mentioning that we considered ratio of peak area for D and G bands
instead of amplitude ratio since we observed the change in full-width at half maximum (FWHM)
more than the change in peak height in most of the samples studied. We observed an increase in ID/IG

ratio with application of bias for the GO and ErGO, which indicates the likelihood of electrochemical
reduction unlike those which are already sufficiently reduced such as rGOHT. In the latter somewhat
opposite trend is observed. The increasing ID/IG ratio as the reduction proceeds suggests decreasing
size of the sp2 C domains since it is inversely proportional to the domain size (La). Additionally,
linewidth narrowing albeit weakly together with G band downshift has been recently used to fol-
low the structural ordering during the reduction process of graphene oxide as a function of applied
potential.49 Briefly, ID/IG changes are considered as the interplay among the degree of reduction,
the C/O ratio and the generation of lattice defects. As C/O is increased, some sp3 carbons are con-
verted to sp2 carbon pairs and some fraction of vacancies defects are introduced. As pairs of sp2

C are generated, the G peak intensity increases. In addition, several sp2 C pairs can cluster to form
aromatic six-member rings which contribute to D peak intensity. For graphene layers exfoliated, sp2

C conversion must nearly balance the number of aromatic 6-member rings formed to maintain a
nearly constant ID/IG. According to Tunistra-Koenig (TK) relation, it is inversely proportional to La

but this relation is valid for La larger than 2 nm such that the in-plane breathing mode is dampened.
Upon decomposition of oxygenated functional groups due to reduction occurring randomly, we can
calculate the effective distance between functional groups (i.e. defects) as a function of C/O using
the fact that there are ∼54 carbons/cm2 of graphene surface. This leads to La = (x/54)0.5, where
x = C/O. For x = 10, La = 0.43 nm and does not reach 2 nm until x = 200. This estimate assumes
that no lattice defects are formed which would break up the graphitic domains further. Chemically
induced defects can also affect the 2D band behavior. The increasing trend for most of the samples
studied with somewhat constant intensity (I2D/IG) ratio with applied bias for some samples studied
indicate reasonable structural ordering and significantly less defect density, particular, in the hybrid
samples. The occasional fluctuation (increase/decrease) with bias is possibly due to the interaction
of graphene decorated transition metal oxide nanostructures leading to localized charge transfer.
Despite monotonic behavior in intensities of both the G and 2D bands, the variations in Fig. 9 depict
that the electron and hole injection across the π–π∗ bands of the graphene-family nanomaterials is
present but not ideal bipolar in nature. Alternatively, it implies that the hole and electron injection
are present both in cobalt oxide- (Figs. 9a and 9b) and manganese oxide-based (Fig. 9c and 9d)
hybrids. The overall decrease in intensity of these modes matches the results with those for chemical
doping. Therefore, the electrochemical charging/discharging offers fine tuning of the electronic band
structure.

While the number of stacked graphene layers in monolayer graphene can be identified by charac-
teristic G and 2D Raman bands, the shifts in these band positions indicate several elements including
lattice defects, mechanical stress/strain, and charge transfer to (or from) graphene sheets. Therefore,
electron/hole rate rendering it makes difficult to quantitatively estimate the doping level. Recently
metal adatoms and clusters on graphene have been a topic of interest and is expected that they locally
dope or modify band structure.10,23,24 In GO, the additional information is provided on the defect
density and crystallite size. In order to understand further, we followed the subtle changes occurring in
G and 2D bands during the electrochemical bias, Fig. 10 plots 2D (ω2D) versus G band (ωG) position.
The samples experienced both upshift and downshift as marked with slopes for negative and posi-
tive potential. The band at ∼1605 cm-1 shift toward lower wavenumbers, indicating the progressive
albeit irreversible reduction or removal of oxygen from GO when the potential is varied from −0.2
to −0.9V and are in accord with the small currents flowing in the voltammograms at low potential.
The D band also shows similar variation (not shown) in its position reported by Stankovich et al.50

for electrochemical potential induced reduction. The spectra also shows upshift in G band attributed
to overlap of G band with D’ (∼1620 cm-1) band that becomes active due to defects, reduced number
of sheets, resulting in blue shift similar to that observed for mechanical exfoliated graphene layers
from kish graphite and the presence of isolated double bonds separated by functional groups on the
carbon network of GO. The redox reactions of the different oxygen containing functional groups in
GO lies very close to each other, which makes complete identification of all groups to those in in-situ
measurement in aqueous electrolyte solutions. The blue shift in G band is due to non-adiabatic
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removal of the Kohn anomaly induced by strong electron-phonon coupling (EPC) in graphene
resulting in electrochemical doping. The upshifts can be understood by considering the doping effect
during discharging/charging. The stiffening of the E2g2 phonon with doping has been previously
explained as increase in the force constant of in-plane C-C bonds similar to those observed in mono-
layer graphene. Interestingly, the upshift is more prominent for the graphene supports employed
compared to monolayer graphene. The Mulliken charge at double bonded O atoms is higher (0.54 e)
than the single bonded O atoms (0.44 e), found to be the main reason of higher binding of C=O.
For carbonyl specie bonded over a tri-vacancy defected graphene sheet, we find that the linear dis-
persion relationship around the K-point is broken. Here conduction band minima (CBM) and valence
band maxima (VBM) become broader and parabolic in nature with larger opening of band gap affect-
ing their interaction with the metal oxides nanostructures. Nevertheless it is challenging to draw
strong conclusion regarding a distinctive contribution from microscopic strain as opposed to doping
by means of G band analysis. The 2D band is known to be a more sensitive indicator of strain than the
G band. The apparently observed downshift of the 2D band (Fig. 10) is followed by observable loss
in intensity (Figs. 5 and 6) for most of the samples studied. The intensity of the 2D band degrades
by the electron-electron scattering effect, which has a positive correlation with doping level. The
doping or charge transfer moved the Fermi level to a point lower than the Dirac point of graphene.
The ratio I2D/IG (Fig. 9) is used to determine doping level. The decrease in this intensity ratio with G
band stiffening (Fig. 10) indicates successive increase in carrier concentration in the graphene. It is
highest for pristine GFNs but decreases with metal oxide decoration. Doping also leads to narrowing
of the G peak (not shown), as reported by Das et al.51 The stability of graphene hybrids is also
apparent.

Therefore the implications are the carrier density modulation induced by charge transfer and the
introduction of mechanical strain by metal or metal oxide layers. The relative strength of the G and
2D peaks’ shift gives information whether charge transfer or strain effect dominates. If the shift of
the G peak is much stronger than that of the 2D peak, this shift of peak is attributed to charge carrier
density modulation, rather than mechanical strain. However, if the shift of the peak is caused by
mechanical strain between metal oxide and graphene, the shift of the 2D peak will be much stronger
than that of the G peak. In our case, the Raman peak shift is caused by the graphene charge carrier
density modulation because of the relatively stronger G shift than 2D peak. Additionally, the direction
of the 2D peak shift reflects the direction of the Fermi level shift. If the 2D peak is redshifted, the
Fermi level of graphene moves up and graphene is expected to be doped by electrons. Alternatively, if
graphene is doped by holes, the 2D peak will be blue shifted.52 In this study, the blueshift in 2D peak
for most of the cobalt oxide-based hybrids indicate hole doping. In the hybrids, electron−transfer
from graphene support to Co3O4 occurs and Co3+ ions occupying the octahedral (Oh) positions are
converted into Co2+. Then the superexchange interactions between Co2+ ions at Td (Tetrahedral) and
Oh positions induce coupling of Co3+ (Td)−Co2+ (Oh). It is also noteworthy that while Co3+ to Co2+

transformation takes place, some oxygen vacancy is also produced that could help to keep the samples
electrically neutral. It should be remarked that this effect in Co3O4 will be restricted to very small
surface regions, because the spinel structure of Co3O4 is unstable if a large fraction of Co3+ is reduced
to Co2+ which will promote the structural transformation.53 Likewise, for MnO2-based hybrids, the
MnO2 octahedra interaction with constitutional water influences the structural distortion and in-turn
electrochemical (re)activity. With applied bias it re-arranges water molecules in acidic media on the
‘hybrid’ electrode surfaces resulting in p-type (for positive bias) and n-type (for negative bias) charge
transfer and hole (electron) doping is revealed (Figs. 10c and 10d). The voltage dependent G peak
and 2D peak position provided complementary information for electrochemical doping of graphene,
since the former is more sensitive for hole-doping, while the latter shows strong sensitivity toward
electron doping. Considering the marginal G band shift value of other related doping works, e.g. 4 cm-1

by molecule doping, metal-oxide nanoparticle exhibit a more efficient doping effect, probably because
of the strong chemical interactions and consequently enhanced charged transfer. The number defect
density, nD = 1.13 x 1011 (ID/IG) can also be calculated for all the samples considering point defects,
bond disorder, and sp3/sp2 ratio in graphene nanodomains. Orbital occupancy is directly tied to band
structure, such that “orbital engineering” could provide a path to controlling materials’ electronic,
electrochemical and optical properties. For example, control over the orbital energies and electron
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occupancies in Mn and Co oxides can make efficient energy storage devices, electrochromic windows
and spin switches.

C. Density functional theory (DFT) calculations

Theoretical calculations have proven to be useful in predicting properties that can be difficult
to deconvolute from experiments with optimized electrode-electrolyte interfaces deducing multiple
charge diffusion and charge transfer events with disparate kinetics. Additional surface and interfa-
cial effects include electrode polarization, local hybridization and electron localization, structural
distortion and charge transfer attributed to ion adsorption. In this section we have carried out DFT
ab-initio calculations that help to elucidate graphene−metal oxide and graphene oxide−metal oxide
interfaces, particularly, in terms of electronic structure (i.e. electron density of states; DOS)54 and
localized orbital re-hybridization with (hydration/solvation effects) and without water molecules
affecting electroactivity.10,32 Figures 11 and 12 show the optimized geometries of CoO and Co3O4,
MnO2-graphene hydrated structures alongside comparative total and partial DOS spectra and the
GO-graphene for O/C ratio ranged from 6.5% to 43.75% with and without hydration, respectively.

1. CoO and Co3O4 adsorbed on graphene with and without hydration

Non-hydrated CoO, Co3O4 and MnO2 adsorbed on graphene nanosheets have been examined
the report.10 The effect of hydration on the geometry of the CoO/graphene is minimal (i.e. no
change in the CoO height h, Fig. 11B) and water molecules reside relatively far from the CoO
adsorbate (minimum dH2O-Co & 3.8 Å). The situation is different for the Co3O4/graphene case.
Here, in the case of single water co-adsorption with the Co3O4 on graphene, the shortest H2O-Co
distance appears at 2.01 Å, whereas subsequent co-adsorbent water molecules are located away
from the Co3O4 structure (Fig. 11A). Contrary to the CoO/graphene, increased hydration causes
the Co3O4 adsorbate to be pushed away from the graphene surface and rotated (Fig. 11A). The use
of larger Co basis set for the non-hydrated CoO and Co3O4 adsorbed on graphene show increased
charge transfer from the graphene support towards the CoO and Co3O4 adsorbates relative to smaller
basis set used in our past work.10 Although hydration minimally affects the geometry of the CoO-
graphene, the corresponding DOS spectra show that hydration alters the CoO-graphene electronic
properties. More specifically, the CoO-Op DOS center-of-mass is downshifted due to hydration,
in agreement with the observed charge increase for the CoO-Op orbital (Fig. 11A). However, the
increased charge of the Co-d orbital due to hydration is not along with the upshift its center-of-mass.
This effect is due to the additional states that appear near the Fermi level similar to d-band dispersion
argument used for CO adsorption on Pt and PtRu clusters (see Fig. 11A and 11B).55 This same
argument can be used to explain the upshift of the Co3O4-Op orbital center-of-mass (i.e. decreased
orbital population) with the increased charge of the orbital upon hydration. Figure 11B shows that
hydration on Co3O4/graphene causes additional states to appear near and below the Fermi energy
level (EF).

2. MnO2 adsorbed on graphene with and without hydration

Here we studied the effect of hydration on MnO2/graphene. Figure 11C shows that the presence
of the water molecules minimally affects the Mn atom height h since the water molecules appears
relatively far away from the MnO2 adsorbate (dH2O-Mn & 3.94 Å). We recall that for the non-hydrated
MnO2/graphene at a surface coverage of 1/8 ML, charge is transferred from the MnO2 adsorbate
towards the graphene substrate.10 However, our current calculations are performed at the lower
1/32 ML MnO2 surface coverage and it is found that this charge flow is reversed (i.e. charge flows
from the graphene support towards the MnO2 adsorbate). The reason for this charge flow change is
attributed to the adsorbate-adsorbate interactions that is evident on the higher 1/8 ML coverage but
is minimized at the 1/32 ML coverage. Hydration increases the charge transferred from graphene
to the MnO2 adsorbate and is due to increased charge at the MnO2-Op orbital, in agreement with
the substantial downshift of the MnO2-Op orbital due to hydration. Similar to the VO2, CoO, and
Co3O4-graphene cases, the MnO2-graphene system is metallic (Fig. 11).10,32 Table I provides the
summary of adsorbate orbital populations per atom and charge transfer to graphene substrates with
one to three water molecules and without hydration.
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FIG. 11. (left panels) Schematics of optimized geometry for (a) Co3O4 (b) CoO and (c) MnO2 clusters co-adsorbed with one,
two, and three water molecules on graphene. The h values are the Co or Mn heights for adsorption on the hydrated graphene
and non-hydrated graphene (closest Co or Mn to graphene). (right panels) DOS spectra of the (a) Co3O4 adsorbed on graphene
with and without 3 waters per atom [H2O] eV for a) the graphene supports of the hydrated and non-hydrated cases, b) Co d
orbitals and c) the O s and p orbitals of the Co3O4. (b) DOS spectra of the CoO adsorbed on graphene with and without 3
waters per atom [H2O] eV for a) the graphene supports of the hydrated and non-hydrated cases, b) Co d orbitals and c) the O
s and p orbitals of the CoO. (c) DOS spectra of the MnO2 adsorbed on graphene with and without 3 waters per atom[H2O]
eV for a) the graphene supports of the hydrated and non-hydrated cases, b) Mn d orbitals and c) the O s and p orbitals of the
MnO2. The 4×4 graphene supercell is used. The vertical line is the Fermi level (EF).
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FIG. 12. Various GO-graphene hydrated (1-3 water molecules) and non-hydrated optimized structures for O/C 6.25 % (a-d),
12.5 % (e-h), 25 % (i-l), 37.5 % (m-p), and 43.75 % (q-t). The 4×4 graphene supercell is used.

3. GO-graphene with and without hydration

In our current GO-graphene calculations we examined the effects of O/C ratio in the structural
and electronic properties of GO-graphene, as well as the corresponding effects of hydration relevant
for this work. Figure 12 shows that the graphene out-of-plane distortions increase along with the
O/C ratio. Figure 13 and Table II show the charge transfers (alternatively, doping type) from the
graphene substrate towards the oxygen atoms and the water molecules (for hydrated GO-graphene).

TABLE I. Adsorbate orbital populations per atom with and without water co-adsorbed on graphene. Numbers in parenthesis
refer to water co-adoption with one, two, and three water molecules.

Charges

Structure Adsorbate Orbital Populations per Atom Charge Transferred to Graphene Substrate

Co3O4/Graphene Co-4s = 0.20 e (0.17 e, -0.53 e (-0.43 e, -0.48 e, -0.51 e)
0.20 e, 0.20 e)

Co-4p = 0.40 e (0.36 e, O-2s = 1.91 e (1.92 e,
0.36 e, 0. 33 e) 1.92 e, 1.93 e)

Co-3d = 7.42 e (7.40 e, O-2p = 4.89 e (4.91 e,
7.39 e,7.39 e) 4.91 e, 4.91 e)

CoO/Graphene Co-4s = 0.45 e (0.45 e, -0.56 e (-0.69 e, -0.76 e, -0.85 e)
0.44 e, 0.43 e)

Co-4p = 0.64 e (0.63 e, O-2s =1.95 e (1.96 e,
0.62 e, 0,62 e) 1.96 e, 1.97 e)

Co-3d = 7.76 e (7.79 e, O-2p = 4.70 e (4.76 e,
7.79 e, 7.81 e) 4.79 e, 4.83 e)

MnO2/Graphene Mn-4s = 0.33 e (0.34 e, -0.20 e (-0.30 e, -0.37 e, -0.42 e)
0.34 e, 0.34 e)

Mn-4p = 0.03 e (0.03 e, O-2s = 1.99 e (1.99 e,
0.03 e, 0.03 e) 1.99 e, 1.99 e)

Mn-3d = 5.28 e (5.28 e, O-2p = 4.73 e (4.76 e,
5.28 e, 5.28 e) 4.77 e, 4.78 e)
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FIG. 13. (a) Charge transfers to graphene support for hydrated and non-hydrated Co3O4-, CoO- and MnO2 and (b) charge
transfer to oxygen for hydrated and non-hydrated GO-graphene with O/C = 12.5 %, 25 %, 37.5 %, and 43.75 %.

For the non-hydrated GO-graphene, the charge transferred from graphene towards oxygens increases
almost proportionally with the O/C ratio. The GO-graphene has been examined in our last report10

using a 2×2 graphene supercell with 8 carbon atoms per unit cell (O/C = 25 %), with the charge
transfer from graphene towards the oxygen atoms reported at 1.13 e. If we scale this value for use
on the 4×4 supercell with 32 graphene carbon atoms, then it is very close to our current value
with the same O/C % (Table II). For all of our GO-graphene structures with O/C < 43.75 %, the
charge transfer from the graphene support towards the oxygen atoms, and in the case of hydration
towards the water molecules, increases along with the hydration. However, for O/C = 43.75 %,
increased hydration leads to decreases in the charge transfer from the graphene support. This change
is better understood by examining the DOS spectra of the GO-graphene with and without three
water molecules (Fig. S3, supplementary material). At O/C = 43.75 %, the water molecules DOS is
upshifted in energy and partially depopulated leading to decreased charge in the waters opposite to
what is observed in all the other cases (see Fig. 13 and Fig. S3, supplementary material). We observe
that increased GO-graphene O/C ratio increases the GO-graphene band gap, leading to insulating
GO-graphene structures for O/C > 25 %. Therefore reduced form of graphene such as chemical
(rGO), thermal (rGOHT) or electrochemical (ErGO) reduced GO are favorable supports for electron

TABLE II. Charge transfers to graphene for hydrated and non-hydrated GO-graphene at various O/C ratios. Values in square
brackets refer to oxygen surplus charges and values in regular brackets refer to water charge surplus.

Charge transferred to graphene (e)

O/C (%) No water 1 water 2 waters 3 waters

6.25 -1.30 -1.38 -1.45 -1.49
[1.30] (0.04) (0.12) (0.14)

[1.33] [1.33] [1.35]

12.5 -2.49 -2.56 -2.61 -2.64
[2.49] (0.04) (0.08) (0.098)

[2.52] [2.53] [2.54]

25.0 -4.49 -4.55 -4.57 -4.59
[4.48] (0.04) (0.06) (0.09)

[4.50] [4.51] [4.51]

37.7 -6.42 -6.43 -6.45 -6.48
[6.42] (0.02) (0.02) (0.03)

[6.42] [6.42] [6.45]

43.75 -7.21 -7.22 -7.21 -7.17
[7.21] (0.02) (0.02) (0.01)

[7.21] [7.20] [7.16]

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-087806
ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-087806
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transportation while designing electrochemical energy systems. Figures 11–13 also show the charge
transfers between the CoO, Co3O4, and MnO2 adsorbates and the graphene support (with and without
water co-adsorbents), as well as the water molecule charge surpluses and the changes of the metal
oxide orbitals.

IV. CONCLUSION

In summary, we reported charge transfer dynamics using in-situ Raman spectro-electrochemistry
for a series of graphene/cobalt and graphene/manganese hybrid electrodes that were strategically
prepared by electrodeposition and facile hydrothermal methods facilitating chemically bridged (cova-
lently and electrostatically anchored) interfaces with tunable properties. By virtue of crumpled and
flower-like morphology, topologically interconnected mesoporous network, and the dimensionality of
graphene nanosheets combined with nanostructured transition metal oxides and cobalt nanoparticles
play significant role in determining the response toward electrochemical (re)activity. Additionally,
controlled distribution and anchored nanostructured transition metal oxides is practically realized.
The Raman spectra as a function of electrochemical bias were analyzed in terms of band position,
intensity, and intensity ratio of prominent bands to quantify various processes. The key findings
are: (i) the longitudinal optical (LO) phonon above 500 cm−1 belonging to Co3O4, CoO and MnO2

and carbon-carbon bonding through D, G, and 2D bands occurring at 1340 cm-1, 1590 cm−1 and
2670 cm-1, respectively, show consistent quasi-reversible behavior and reveal structural distortions,
combination of charge transfer and mechanical strain resulting in finely tuned fermi level or elec-
tronic structure due to orbital re-hybridization (ii) the Fermi level shift estimated using mathematical
modeling of Raman intensity was 0.2 eV as an upper bound (iii) the changes occurred due to over-
lap integral between the s, p (and d) orbitals of the metal or metal oxide nanoparticles and the
vicinal carbon (π−π∗) and carbon-oxygen atoms and (iv) the nature of charge transfer (n− or p−
type). These results are complemented with DFT calculations demonstrating the synergistic coupling
between hydrated cobalt (and manganese) oxide polymorphs and graphene support. It is conceivable
that nanostructured transition metal oxides result in the minimization of dead volume and provi-
sion of conduction pathway by graphene support in aqueous electrolytes becomes indispensable.
Finally, these findings accelerate the progress in basic understanding and we are one step closer to
industrialization for future applications of graphene-based hybrids as new noble-metal free electro-
catalysts for sensing platforms, rechargeable Li-ion batteries cathodes and ‘hybrid’ supercapacitive
electrodes.

SUPPLEMENTARY MATERIAL

See supplementary material for Materials and deposition methods: preparation of graphene oxide,
reduced graphene oxide, electrochemically reduced graphene oxide, cobalt and manganese oxide
hybrids, description on theoretical calculations using DFT, in-situ Raman spectra: CoO, CoO/ErGO,
CoNP/MLG, GO, rGO, MnOx/rGO, DFT calculations of electron density of states (DOS) spectra:
GO with and without water adsorbed at O/C = 6.25 %, 12.5 %, 25 %, 37.5 % and 43.75 %. This
material is available free of charge via the Internet at http://aip.org.

ACKNOWLEDGMENTS

The corresponding author (S.G.) gratefully acknowledges financial support in parts from KSEF-
RDE (Grant #148-502-17-397), KY NSF EPSCoR RSP (subaward #3200000271-17-212), KY NSF
EPSCoR REG (subaward #3200000271-18-059), KY NASA EPSCoR (RID-3-NNX15AK28A, sub-
award #3200000029-17-229), NSF-MRI (Grant #1429563), and NSF EPSCoR Track RII (subaward
#EPS-0814194) grants. The student co-author (S.B.C) is thankful to J. Andersland (Biology) for
SEM and TEM training.

1 Q. Lu, Q. Zhao, H. Zhang, J. Li, X. Wang, and F. Wang, ACS Macro Lett. 2, 92 (2013).
2 P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008), and references therein.
3 S. Gupta, E. Heintzman, and C. Price, J. Nanosci. Nanotechnol. 16, 374 (2016).

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-087806
http://aip.org
https://doi.org/10.1021/mz3005605
https://doi.org/10.1038/nmat2297
https://doi.org/10.1166/jnn.2016.10721


065225-23 Gupta et al. AIP Advances 8, 065225 (2018)

4 S. Gupta, M. Hughes, A. H. Windle, and J. Robertson, J. Appl. Phys. 95, 2038 (2004).
5 J. R. Miller and P. Simon, Science 332, 1537 (2011).
6 N. L. Torad, R. R. Salunkhe, Y. Li, H. Hamoudi, M. Imura, Y. Sakka, C.-C. Hu, and Y. Yamauchi, Chem. Eur. J. 20, 7895

(2014).
7 Q. Lu, J. G. Chen, and J. Q. Xiao, Angew. Chem. Int. Ed. 52, 1992 (2013).
8 V. Augustyn, P. Simon, and B. Dunn, Energy Environ. Sci. 7, 1597 (2014).
9 Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, and L.-C. Qin, Carbon 49, 2917 (2011).

10 S. Gupta, S. B. Carrizosa, B. McDonald, J. Jasinski, and N. Dimakis, J. Mater. Res. 32, 301 (2017), and references therein.
11 S. Gupta and S. B. Carrizosa, Appl. Phys. Lett. 109, 243903 (2016), and references therein.
12 A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007), and references therein.
13 Y. Zhang, L. Zhang, and C. Zhou, Acc. Chem. Res. 46, 2329 (2013), and references therein.
14 W. S. Hummers and R. E. Offman, J. Am. Chem. Soc. 80, 1339 (1958).
15 S. Park, J. An, R. J. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, Carbon 49, 3019 (2011).
16 G. Eda and M. Chowalla, Adv. Mater. 22, 2392 (2010).
17 R. Holze and Y. P. Wu, Electrochimica Acta 122, 83 (2014).
18 S. Gupta, E. Heintzman, and C. Price, J. Nanosci. Nanotechnol. 16, 4771 (2016).
19 S. Gupta and C. Price, AIP Adv. 5, 107113 (2016).
20 S. Gupta and C. Price, J. Composites Part B 105, 46 (2016).
21 S. Makino, Y. Yamauchi, and W. Sugimoto, J. Power Sources 227, 153 (2013), and references therein.
22 S. Gupta, M. vanMeveren, and J. Jasinski, Int. J. Electrochem. Sci. 10, 10272 (2015), and references therein.
23 S. Gupta and S. B. Carrizosa, J. Electron. Mater. 44, 4492 (2015), and references therein.
24 S. Gupta, M. vanMeveren, and J. Jasinski, J. Electron. Mater. 44, 62 (2015).
25 X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M. B. C.-Park, H. Zhang, L.-H. Wang, W. Huang, and P. Chen, ACS Nano

6, 3206 (2012), and references therein.
26 X. Huang, X. Y. Qi, and H. Zhang, Chem. Soc. Rev. 41, 666 (2012), and references therein.
27 B. E. Conway, V. Bliss, and J. Wojtowicz, J. Power Sources 66, 1 (1997).
28 A. Ghosh, E. J. Ra, M. Jin, H.-K. Jeong, T. H. Kim, C. Biswas, and Y. H. Lee, Adv. Funct. Mater. 21, 2541 (2011).
29 J. Li, L. L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, and R. S. Ruoff, ACS Nano 7, 6237 (2013).
30 D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
31 D. G. Castner, K. Hinds, and D. W. Grainger, Langmuir 12, 5083 (1996).
32 A. Hunt, D. A. Dikin, E. Z. Kurmaev, T. D. Boyko, P. Bazylewski, G. S. Chang, and A. Moewes, Adv. Func. Mater. 22,

3950 (2012).
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