135 research outputs found
Description of recent large- neutron inclusive scattering data from liquid He
We report dynamical calculations for large- structure functions of liquid
He at =1.6 and 2.3 K and compare those with recent MARI data. We extend
those calculations far beyond the experimental range q\le 29\Ain in order to
study the approach of the response to its asymptotic limit for a system with
interactions having a strong short-range repulsion. We find only small
deviations from theoretical behavior, valid for smooth . We repeat an
extraction by Glyde et al of cumulant coefficients from data. We argue that
fits determine the single atom momentum distribution, but express doubt as to
the extraction of meaningful Final State Interaction parameters.Comment: 37 pages, 13 postscript fig
Energetic Components of Cooperative Protein Folding
A new lattice protein model with a four-helix bundle ground state is analyzed
by a parameter-space Monte Carlo histogram technique to evaluate the effects of
an extensive variety of model potentials on folding thermodynamics. Cooperative
helical formation and contact energies based on a 5-letter alphabet are found
to be insufficient to satisfy calorimetric and other experimental criteria for
two-state folding. Such proteinlike behaviors are predicted, however, by models
with polypeptide-like local conformational restrictions and
environment-dependent hydrogen bonding-like interactions.Comment: 11 pages, 4 postscripts figures, Phys. Rev. Lett. (in press
Momentum distributions in ^3He-^4He liquid mixtures
We present variational calculations of the one-body density matrices and
momentum distributions for ^3He-^4He mixtures in the zero temperature limit, in
the framework of the correlated basis functions theory. The ground-state wave
function contains two- and three-body correlations and the matrix elements are
computed by (Fermi)Hypernetted Chain techniques. The dependence on the ^3He
concentration (x_3) of the ^4He condensate fraction and of the
^3He pole strength (Z_F) is studied along the P=0 isobar. At low ^3He
concentration, the computed ^4He condensate fraction is not significantly
affected by the ^3He statistics. Despite of the low x_3 values, Z_F is found to
be quite smaller than that of the corresponding pure ^3He because of the strong
^3He-^4He correlations and of the overall, large total density \rho. A small
increase of along x_3 is found, which is mainly due to the decrease
of \rho respect to the pure ^4He phase.Comment: 23 pages, 7 postscript figures, Revte
Single-molecule experiments in biological physics: methods and applications
I review single-molecule experiments (SME) in biological physics. Recent
technological developments have provided the tools to design and build
scientific instruments of high enough sensitivity and precision to manipulate
and visualize individual molecules and measure microscopic forces. Using SME it
is possible to: manipulate molecules one at a time and measure distributions
describing molecular properties; characterize the kinetics of biomolecular
reactions and; detect molecular intermediates. SME provide the additional
information about thermodynamics and kinetics of biomolecular processes. This
complements information obtained in traditional bulk assays. In SME it is also
possible to measure small energies and detect large Brownian deviations in
biomolecular reactions, thereby offering new methods and systems to scrutinize
the basic foundations of statistical mechanics. This review is written at a
very introductory level emphasizing the importance of SME to scientists
interested in knowing the common playground of ideas and the interdisciplinary
topics accessible by these techniques. The review discusses SME from an
experimental perspective, first exposing the most common experimental
methodologies and later presenting various molecular systems where such
techniques have been applied. I briefly discuss experimental techniques such as
atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers
(MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I
then present several applications of SME to the study of nucleic acids (DNA,
RNA and DNA condensation), proteins (protein-protein interactions, protein
folding and molecular motors). Finally, I discuss applications of SME to the
study of the nonequilibrium thermodynamics of small systems and the
experimental verification of fluctuation theorems. I conclude with a discussion
of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond.
Matt
Calculation of the Free Energy and Cooperativity of Protein Folding
Calculation of the free energy of protein folding and delineation of its pre-organization are of foremost importance for understanding, predicting and designing biological macromolecules. Here, we introduce an energy smoothing variant of parallel tempering replica exchange Monte Carlo (REMS) that allows for efficient configurational sampling of flexible solutes under the conditions of molecular hydration. Its usage to calculate the thermal stability of a model globular protein, Trp cage TC5b, achieves excellent agreement with experimental measurements. We find that the stability of TC5b is attained through the coupled formation of local and non-local interactions. Remarkably, many of these structures persist at high temperature, concomitant with the origin of native-like configurations and mesostates in an otherwise macroscopically disordered unfolded state. Graph manifold learning reveals that the conversion of these mesostates to the native state is structurally heterogeneous, and that the cooperativity of their formation is encoded largely by the unfolded state ensemble. In all, these studies establish the extent of thermodynamic and structural pre-organization of folding of this model globular protein, and achieve the calculation of macromolecular stability ab initio, as required for ab initio structure prediction, genome annotation, and drug design
Revisiting the Myths of Protein Interior: Studying Proteins with Mass-Fractal Hydrophobicity-Fractal and Polarizability-Fractal Dimensions
A robust marker to describe mass, hydrophobicity and polarizability distribution holds the key to deciphering structural and folding constraints within proteins. Since each of these distributions is inhomogeneous in nature, the construct should be sensitive in describing the patterns therein. We show, for the first time, that the hydrophobicity and polarizability distributions in protein interior follow fractal scaling. It is found that (barring ‘all-α’) all the major structural classes of proteins have an amount of unused hydrophobicity left in them. This amount of untapped hydrophobicity is observed to be greater in thermophilic proteins, than that in their (structurally aligned) mesophilic counterparts. ‘All-β’(thermophilic, mesophilic alike) proteins are found to have maximum amount of unused hydrophobicity, while ‘all-α’ proteins have been found to have minimum polarizability. A non-trivial dependency is observed between dielectric constant and hydrophobicity distributions within (α+β) and ‘all-α’ proteins, whereas absolutely no dependency is found between them in the ‘all-β’ class. This study proves that proteins are not as optimally packed as they are supposed to be. It is also proved that origin of α-helices are possibly not hydrophobic but electrostatic; whereas β-sheets are predominantly hydrophobic in nature. Significance of this study lies in protein engineering studies; because it quantifies the extent of packing that ensures protein functionality. It shows that myths regarding protein interior organization might obfuscate our knowledge of actual reality. However, if the later is studied with a robust marker of strong mathematical basis, unknown correlations can still be unearthed; which help us to understand the nature of hydrophobicity, causality behind protein folding, and the importance of anisotropic electrostatics in stabilizing a highly complex structure named ‘proteins’
Full design automation of multi-state RNA devices to program gene expression using energy-based optimization
[EN] Small RNAs (sRNAs) can operate as regulatory agents to control protein expression by interaction with the 59 untranslated
region of the mRNA. We have developed a physicochemical framework, relying on base pair interaction energies, to design
multi-state sRNA devices by solving an optimization problem with an objective function accounting for the stability of the
transition and final intermolecular states. Contrary to the analysis of the reaction kinetics of an ensemble of sRNAs, we solve
the inverse problem of finding sequences satisfying targeted reactions. We show here that our objective function correlates
well with measured riboregulatory activity of a set of mutants. This has enabled the application of the methodology for an
extended design of RNA devices with specified behavior, assuming different molecular interaction models based on
Watson-Crick interaction. We designed several YES, NOT, AND, and OR logic gates, including the design of combinatorial
riboregulators. In sum, our de novo approach provides a new paradigm in synthetic biology to design molecular interaction
mechanisms facilitating future high-throughput functional sRNA design.Work supported by the grants FP7-ICT-043338 (BACTOCOM) to AJ, and BIO2011-26741 (Ministerio de Economia y Competitividad, Spain) to JAD. GR is supported by an EMBO long-term fellowship co-funded by Marie Curie actions (ALTF-1177-2011), and TEL by a PhD fellowship from the AXA Research Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Rodrigo Tarrega, G.; Landrain, TE.; Majer, E.; Daros Arnau, JA.; Jaramillo, A. (2013). Full design automation of multi-state RNA devices to program gene expression using energy-based optimization. PLoS Computational Biology. 9(8):1003172-1003172. https://doi.org/10.1371/journal.pcbi.1003172S1003172100317298Isaacs, F. J., Dwyer, D. J., & Collins, J. J. (2006). RNA synthetic biology. Nature Biotechnology, 24(5), 545-554. doi:10.1038/nbt1208Isaacs, F. J., Dwyer, D. J., Ding, C., Pervouchine, D. D., Cantor, C. R., & Collins, J. J. (2004). Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnology, 22(7), 841-847. doi:10.1038/nbt986Lucks, J. B., Qi, L., Mutalik, V. K., Wang, D., & Arkin, A. P. (2011). Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proceedings of the National Academy of Sciences, 108(21), 8617-8622. doi:10.1073/pnas.1015741108Mutalik, V. K., Qi, L., Guimaraes, J. C., Lucks, J. B., & Arkin, A. P. (2012). Rationally designed families of orthogonal RNA regulators of translation. Nature Chemical Biology, 8(5), 447-454. doi:10.1038/nchembio.919Bayer, T. S., & Smolke, C. D. (2005). Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nature Biotechnology, 23(3), 337-343. doi:10.1038/nbt1069Nakashima, N., & Tamura, T. (2009). Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Research, 37(15), e103-e103. doi:10.1093/nar/gkp498Callura, J. M., Cantor, C. R., & Collins, J. J. (2012). Genetic switchboard for synthetic biology applications. Proceedings of the National Academy of Sciences, 109(15), 5850-5855. doi:10.1073/pnas.1203808109Beisel, C. L., Bayer, T. S., Hoff, K. G., & Smolke, C. D. (2008). Model‐guided design of ligand‐regulated RNAi for programmable control of gene expression. Molecular Systems Biology, 4(1), 224. doi:10.1038/msb.2008.62Qi, L., Lucks, J. B., Liu, C. C., Mutalik, V. K., & Arkin, A. P. (2012). Engineering naturally occurring trans -acting non-coding RNAs to sense molecular signals. Nucleic Acids Research, 40(12), 5775-5786. doi:10.1093/nar/gks168Carothers, J. M., Goler, J. A., Juminaga, D., & Keasling, J. D. (2011). Model-Driven Engineering of RNA Devices to Quantitatively Program Gene Expression. Science, 334(6063), 1716-1719. doi:10.1126/science.1212209Rodrigo, G., Landrain, T. E., & Jaramillo, A. (2012). De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proceedings of the National Academy of Sciences, 109(38), 15271-15276. doi:10.1073/pnas.1203831109Brantl, S. (2002). Antisense-RNA regulation and RNA interference. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1575(1-3), 15-25. doi:10.1016/s0167-4781(02)00280-4Majdalani, N., Vanderpool, C. K., & Gottesman, S. (2005). Bacterial Small RNA Regulators. Critical Reviews in Biochemistry and Molecular Biology, 40(2), 93-113. doi:10.1080/10409230590918702Selinger, D. W., Cheung, K. J., Mei, R., Johansson, E. M., Richmond, C. S., Blattner, F. R., … Church, G. M. (2000). RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nature Biotechnology, 18(12), 1262-1268. doi:10.1038/82367Yelin, R., Dahary, D., Sorek, R., Levanon, E. Y., Goldstein, O., Shoshan, A., … Rotman, G. (2003). Widespread occurrence of antisense transcription in the human genome. Nature Biotechnology, 21(4), 379-386. doi:10.1038/nbt808Wang, X.-J., Gaasterland, T., & Chua, N.-H. (2005). Genome Biology, 6(4), R30. doi:10.1186/gb-2005-6-4-r30Stojanovic, M. N., & Stefanovic, D. (2003). A deoxyribozyme-based molecular automaton. Nature Biotechnology, 21(9), 1069-1074. doi:10.1038/nbt862Seelig, G., Soloveichik, D., Zhang, D. Y., & Winfree, E. (2006). Enzyme-Free Nucleic Acid Logic Circuits. Science, 314(5805), 1585-1588. doi:10.1126/science.1132493Yin, P., Choi, H. M. T., Calvert, C. R., & Pierce, N. A. (2008). Programming biomolecular self-assembly pathways. Nature, 451(7176), 318-322. doi:10.1038/nature06451Ran, T., Kaplan, S., & Shapiro, E. (2009). Molecular implementation of simple logic programs. Nature Nanotechnology, 4(10), 642-648. doi:10.1038/nnano.2009.203Penchovsky, R., & Breaker, R. R. (2005). Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nature Biotechnology, 23(11), 1424-1433. doi:10.1038/nbt1155Salis, H. M., Mirsky, E. A., & Voigt, C. A. (2009). Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology, 27(10), 946-950. doi:10.1038/nbt.1568Laidler, K. J., & King, M. C. (1983). Development of transition-state theory. The Journal of Physical Chemistry, 87(15), 2657-2664. doi:10.1021/j100238a002Sosnick, T. R., & Pan, T. (2003). RNA folding: models and perspectives. Current Opinion in Structural Biology, 13(3), 309-316. doi:10.1016/s0959-440x(03)00066-6Yurke, B. (2003). Genetic Programming and Evolvable Machines, 4(2), 111-122. doi:10.1023/a:1023928811651Bandyra, K. J., Said, N., Pfeiffer, V., Górna, M. W., Vogel, J., & Luisi, B. F. (2012). The Seed Region of a Small RNA Drives the Controlled Destruction of the Target mRNA by the Endoribonuclease RNase E. Molecular Cell, 47(6), 943-953. doi:10.1016/j.molcel.2012.07.015Dawid, A., Cayrol, B., & Isambert, H. (2009). RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation. Physical Biology, 6(2), 025007. doi:10.1088/1478-3975/6/2/025007Lioliou, E., Romilly, C., Romby, P., & Fechter, P. (2010). RNA-mediated regulation in bacteria: from natural to artificial systems. New Biotechnology, 27(3), 222-235. doi:10.1016/j.nbt.2010.03.002Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E., & Pierce, N. A. (2007). Thermodynamic Analysis of Interacting Nucleic Acid Strands. SIAM Review, 49(1), 65-88. doi:10.1137/060651100Das, R., Karanicolas, J., & Baker, D. (2010). Atomic accuracy in predicting and designing noncanonical RNA structure. Nature Methods, 7(4), 291-294. doi:10.1038/nmeth.1433Vogel, J., & Luisi, B. F. (2011). Hfq and its constellation of RNA. Nature Reviews Microbiology, 9(8), 578-589. doi:10.1038/nrmicro2615Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G., & Collins, J. J. (2009). Synthetic Gene Networks That Count. Science, 324(5931), 1199-1202. doi:10.1126/science.1172005Rodrigo, G., Carrera, J., Landrain, T. E., & Jaramillo, A. (2012). Perspectives on the automatic design of regulatory systems for synthetic biology. FEBS Letters, 586(15), 2037-2042. doi:10.1016/j.febslet.2012.02.031Chin, J. W. (2006). Modular approaches to expanding the functions of living matter. Nature Chemical Biology, 2(6), 304-311. doi:10.1038/nchembio789McCaskill, J. S. (1990). The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29(6-7), 1105-1119. doi:10.1002/bip.360290621Chitsaz, H., Salari, R., Sahinalp, S. C., & Backofen, R. (2009). A partition function algorithm for interacting nucleic acid strands. Bioinformatics, 25(12), i365-i373. doi:10.1093/bioinformatics/btp212Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., & Schuster, P. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte f�r Chemie Chemical Monthly, 125(2), 167-188. doi:10.1007/bf00818163Andronescu, M., Zhang, Z. C., & Condon, A. (2005). Secondary Structure Prediction of Interacting RNA Molecules. Journal of Molecular Biology, 345(5), 987-1001. doi:10.1016/j.jmb.2004.10.082Mathews, D. H., Sabina, J., Zuker, M., & Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology, 288(5), 911-940. doi:10.1006/jmbi.1999.2700Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.67
- …