50 research outputs found

    Artesunate dose escalation for the treatment of uncomplicated malaria in a region of reported artemisinin resistance: A randomized clinical trial

    Get PDF
    Background: The emergence of artemisinin resistance has raised concerns that the most potent antimalarial drug may be under threat. The currently recommended daily dose of artesunate (AS) is 4 mg/kg, and is administered for 3 days together with a partner antimalarial drug. This study investigated the impact of different AS doses on clinical and parasitological responses in malaria patients from an area of known artemisinin resistance in western Cambodia. Methods: Adult patients with uncomplicated P. falciparum malaria were randomized into one of three 7-day AS monotherapy regimens: 2, 4 or 6 mg/kg/day (total dose 14, 28 and 42 mg/kg). Clinical, parasitological, pharmacokinetic and in vitro drug sensitivity data was collected over a 7-day inpatient period and during weekly follow-up to 42 days. Results: 143 patients were enrolled (n = 75, 40 and 28 to receive AS 2, 4 and 6 mg/kg/day respectively). Cure rates were high in all treatment groups at 42 days despite almost half the patients remaining parasitemic on Day 3. There was no impact of increasing AS dose on median parasite clearance times, median parasite clearance rates or on the proportion of patients remaining parasitemic on Day 3. However at the lowest dose used (2 mg/kg/d) patients with parasitemia >10,000/μL had longer median (IQR) parasite clearance times than those with parasitemia <10,000/μL (63 (48-75) vs. 84 (66-96) hours, p<0.0001). 19% of patients in the high-dose arm developed neutropenia (absolute neutrophil count <1.0×109/L) by Day 14 and resulted in the arm being halted early. Conclusion: There is no pharmacodynamic benefit of increasing the daily dose of AS (4mg/kg) currently recommended for short-course combination treatment of uncomplicated malaria, even in regions with emerging artemisinin resistance, as long as the partner drug retains high efficacy

    Persistence of Plasmodium falciparum parasitemia after artemisinin combination therapy: evidence from a randomized trial in Uganda

    Get PDF
    Artemisinin resistance is rapidly spreading in Southeast Asia. The efficacy of artemisinin-combination therapy (ACT) continues to be excellent across Africa. We performed parasite transcriptional profiling and genotyping on samples from an antimalarial treatment trial in Uganda. We used qRT-PCR and genotyping to characterize residual circulating parasite populations after treatment with either ACT or ACT-primaquine. Transcripts suggestive of circulating ring stage parasites were present after treatment at a prevalence of >25% until at least 14 days post initiation of treatment. Greater than 98% of all ring stage parasites were cleared within the first 3 days, but subsequently persisted at low concentrations until day 14 after treatment. Genotyping demonstrated a significant decrease in multiplicity of infection within the first 2 days in both ACT and ACT-primaquine arms. However, multiple clone infections persisted until day 14 post treatment. Our data suggest the presence of genetically diverse persisting parasite populations after ACT treatment. Although we did not demonstrate clinical treatment failures after ACT and the viability and transmissibility of persisting ring stage parasites remain to be shown, these findings are of relevance for the interpretation of parasite clearance transmission dynamics and for monitoring drug effects in Plasmodium falciparum parasites

    Worldwide Genetic Variability of the Duffy Binding Protein: Insights into Plasmodium vivax Vaccine Development

    Get PDF
    The dependence of Plasmodium vivax on invasion mediated by Duffy binding protein (DBP) makes this protein a prime candidate for development of a vaccine. However, the development of a DBP-based vaccine might be hampered by the high variability of the protein ligand (DBPII), known to bias the immune response toward a specific DBP variant. Here, the hypothesis being investigated is that the analysis of the worldwide DBPII sequences will allow us to determine the minimum number of haplotypes (MNH) to be included in a DBP-based vaccine of broad coverage. For that, all DBPII sequences available were compiled and MNH was based on the most frequent nonsynonymous single nucleotide polymorphisms, the majority mapped on B and T cell epitopes. A preliminary analysis of DBPII genetic diversity from eight malaria-endemic countries estimated that a number between two to six DBP haplotypes (17 in total) would target at least 50% of parasite population circulating in each endemic region. Aiming to avoid region-specific haplotypes, we next analyzed the MNH that broadly cover worldwide parasite population. The results demonstrated that seven haplotypes would be required to cover around 60% of DBPII sequences available. Trying to validate these selected haplotypes per country, we found that five out of the eight countries will be covered by the MNH (67% of parasite populations, range 48–84%). In addition, to identify related subgroups of DBPII sequences we used a Bayesian clustering algorithm. The algorithm grouped all DBPII sequences in six populations that were independent of geographic origin, with ancestral populations present in different proportions in each country. In conclusion, in this first attempt to undertake a global analysis about DBPII variability, the results suggest that the development of DBP-based vaccine should consider multi-haplotype strategies; otherwise a putative P. vivax vaccine may not target some parasite populations

    Molecular markers and genetic diversity of Plasmodium vivax

    Full text link
    corecore