428 research outputs found

    Analysis of simple inventory control systems with execution errors: Economic impact under correction opportunities

    Get PDF
    Cataloged from PDF version of article.Motivated by recent empirical evidence, we study the economic impact of inventory record inaccuracies that arise due to execution errors. We model a set of probable events regarding the erroneous registering of sales at each demand arrival. We define correction opportunities that can be used to (at least partially) correct inventory records. We analyze a simple inventory control model with execution errors and correction opportunities, and demonstrate that decisions that consider the existence of recording errors and the mechanisms with which they are corrected can be quite complicated and exhibit complex tradeoffs. To evaluate the economic impact of inventory record inaccuracies, we use a simulation model of a (Q,r) inventory control system and evaluate suboptimalities in cost and customer service that arise as a result of untimely triggering of orders due to inventory record inaccuracies. We show that the economic impact of inventory record inaccuracies can be significant, particularly in systems with small order sizes and low reorder levels. (C) 2010 Elsevier BM. All rights reserved

    HIGH PERFORMANCE COMPUTING: CLEAN COAL GASIFIER DESIGNS USING HYBRID PARALLELIZATION

    Get PDF
    One of the targets for coal gasification in the near future is capturing 90% of the carbon with less than a 10% increase in cost of electricity. Aggressive goals like this will require innovative gasifier designs to reach the market place quickly, with less risk, and in an economically viable way. Researchers at the National Energy Technology Laboratory (NETL) are collaborating with industry, academia, and other national labs on multiphase computational models like the legacy code MFIX (Multiphase Flow with Interphase eXchange) which can help design, operate, and scale-up clean coal gasifiers to meet the challenges or a carbon constrained world. In fact, NETL has hosted a series of multiphase workshops which has produced a multiphase flow science technology roadmap to achieve the goal “that by 2015 multiphase science based computer simulations play a significant role in the design, operation, and troubleshooting of multiphase flow devices in fossil fuel processing plants”. In this study, we present our experience of porting MFIX, an open source multiphase computational fluid dynamic model, to a high performance computing platform and how the resulting high fidelity simulations are impacting the design of clean coal gasifiers of tomorrow. Inherent to these gasifiers is the various time and length scales which require very high spatial resolution, large number of iterations with small time-steps to resolve and predict the spatiotemporal variations in gas and solids volume fractions, velocities, temperatures with any associated phase change and chemical reactions. These requirements resulted in perhaps the largest known simulations of gas-solids reacting flows, providing detailed information about the gas-solids flow structure, pressure, temperature and species distribution in the gasifier. From a computational science perspective, we found that global communication has to be reduced to achieve scalability to 1000s of cores and hybrid parallelization can yield substantial improvement in time-to-solution when utilizing thousands of multi-core processors

    Application of a Microfluidic Gas-to-Liquid Interface for Extraction of Target Amphetamines and Precursors from Air Samples.

    Get PDF
    The investigation of clandestine laboratories poses serious hazards for first responders, emergency services, investigators and the surrounding public due to the risk of exposure to volatile organic compounds (VOCs) used in the manufacture of illicit substances. A novel gas sampling interface using open microfluidic channels that enables the extraction of VOCs out of the gas phase and into a liquid, where it can be analysed by conventional detection systems, has recently been developed. This paper investigates the efficiency and effectiveness of such a gas-to-liquid (GTL) extraction system for the extraction of amphetamine-type substances (ATS) and their precursors from the vapour phase. The GTL interface was evaluated across a range of different ATS and their precursors (methamphetamine, dimethylamphetamine, N-formylmethamphetamine, benzaldehyde, phenyl-2-propanone, ephedrine and pseudoephedrine) at concentrations ranging between 10 and 32 mg m-3. These gas samples were produced by a gas generation system directly in Tedlar® bags and gas canisters for controlled volume sampling. When using gas sampled from Tedlar® bags, four of the seven compounds were able to be extracted by the GTL interface, with the majority of the VOCs having extraction yields between 0.005% and 4.5%, in line with the results from an initial study. When samples were taken from gas canisters, only benzaldehyde was able to be detected, with extraction efficiencies between 0.2% and 0.4%. A custom-built mount for the GTL interface helped to automate the extraction process, with the aim of increasing extraction efficiency or reducing variability. However, the extraction efficiency did not improve when using this accessory, but the procedure did become more efficient. The results from the study indicated that the GTL interface could be employed for the collection of gaseous ATS and incorporated into mobile detection systems for onsite collection and analysis of volatile compounds related to ATS manufacture

    myKaryoView: A Light-Weight Client for Visualization of Genomic Data

    Get PDF
    The Distributed Annotation System (DAS) is a protocol for easy sharing and integration of biological annotations. In order to visualize feature annotations in a genomic context a client is required. Here we present myKaryoView, a simple light-weight DAS tool for visualization of genomic annotation. myKaryoView has been specifically configured to help analyse data derived from personal genomics, although it can also be used as a generic genome browser visualization. Several well-known data sources are provided to facilitate comparison of known genes and normal variation regions. The navigation experience is enhanced by simultaneous rendering of different levels of detail across chromosomes. A simple interface is provided to allow searches for any SNP, gene or chromosomal region. User-defined DAS data sources may also be added when querying the system. We demonstrate myKaryoView capabilities for adding user-defined sources with a set of genetic profiles of family-related individuals downloaded directly from 23andMe. myKaryoView is a web tool for visualization of genomic data specifically designed for direct-to-consumer genomic data that uses publicly available data distributed throughout the Internet. It does not require data to be held locally and it is capable of rendering any feature as long as it conforms to DAS specifications. Configuration and addition of sources to myKaryoView can be done through the interface. Here we show a proof of principle of myKaryoView's ability to display personal genomics data with 23andMe genome data sources. The tool is available at: http://mykaryoview.com

    Access to Resources for Substance Users in Harlem, New York City: service provider and client perspectives

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/40365/2/Galea_Access to Resources for Substance Users_2002.pd

    Haematopoietic stem cell migration to the ischemic damaged kidney is not altered by manipulating the SDF-1/CXCR4-axis

    Get PDF
    Background. Haematopoietic stem cells (HSC) have been shown to migrate to the ischemic kidney. The factors that regulate the trafficking of HSC to the ischemic damaged kidney are not fully understood. The stromal cell-derived factor-1 (SDF-1)/CXCR4-axis has been identified as the central signalling axis regulating trafficking of HSC to the bone marrow. Therefore, we hypothesized that SDF-1/CXCR4 interactions are implicated in the migration of HSC to the injured kidney

    Challenges of beta-deformation

    Full text link
    A brief review of problems, arising in the study of the beta-deformation, also known as "refinement", which appears as a central difficult element in a number of related modern subjects: beta \neq 1 is responsible for deviation from free fermions in 2d conformal theories, from symmetric omega-backgrounds with epsilon_2 = - epsilon_1 in instanton sums in 4d SYM theories, from eigenvalue matrix models to beta-ensembles, from HOMFLY to super-polynomials in Chern-Simons theory, from quantum groups to elliptic and hyperbolic algebras etc. The main attention is paid to the context of AGT relation and its possible generalizations.Comment: 20 page

    Comprehensive establishment and characterization of orthoxenograft mouse models of malignant peripheral nerve sheath tumors for personalized medicine

    Get PDF
    Malignant peripheral nerve sheath tumors (MPNSTs) are soft-tissue sarcomas that can arise either sporadically or in association with neurofibromatosis type 1 (NF1). These aggressive malignancies confer poor survival, with no effective therapy available. We present the generation and characterization of five distinct MPNST orthoxenograft models for preclinical testing and personalized medicine. Four of the models are patient-derived tumor xenografts (PDTX), two independent MPNSTs from the same NF1 patient and two from different sporadic patients. The fifth model is an orthoxenograft derived from an NF1-related MPNST cell line. All MPNST orthoxenografts were generated by tumor implantation, or cell line injection, next to the sciatic nerve of nude mice, and were perpetuated by 7-10 mouse-to-mouse passages. The models reliably recapitulate the histopathological properties of their parental primary tumors. They also mimic distal dissemination properties in mice. Human stroma was rapidly lost after MPNST engraftment and replaced by murine stroma, which facilitated genomic tumor characterization. Compatible with an origin in a catastrophic event and subsequent genome stabilization, MPNST contained highly altered genomes that remained remarkably stable in orthoxenograft establishment and along passages. Mutational frequency and type of somatic point mutations were highly variable among the different MPNSTs modeled, but very consistent when comparing primary tumors with matched orthoxenografts generated. Unsupervised cluster analysis and principal component analysis (PCA) using an MPNST expression signature of ~1,000 genes grouped together all primary tumor-orthoxenograft pairs. Our work points to differences in the engraftment process of primary tumors compared with the engraftment of established cell lines. Following standardization and extensive characterization and validation, the orthoxenograft models were used for initial preclinical drug testing. Sorafenib (a BRAF inhibitor), in combination with doxorubicin or rapamycin, was found to be the most effective treatment for reducing MPNST growth. The development of genomically well-characterized preclinical models for MPNST allowed the evaluation of novel therapeutic strategies for personalized medicine
    corecore