162 research outputs found

    Modal parameters identification with environmental tests and advanced numerical analyses for masonry bell towers: a meaningful case study

    Get PDF
    Abstract In the first part, a dynamic monitoring for non-destructive evaluation of heritage structures is discussed with reference to a case study, namely the Pomposa Abbey belfry, located in the Ferrara Province (Italy). The main dynamic parameters constitute an important reference to define an advanced numerical model, discussed in the second part, based on Non-Smooth Contact Dynamics (NSCD) method. Schematised as a system of rigid blocks undergoing frictional sliding and plastic impacts, the tower has exhibited complex dynamics, because of both geometrical nonlinearity and the non-smooth nature of the contact laws. First, harmonic oscillations have been applied to the basement of the tower and a systematic parametric study has been conducted, aimed at correlating the system vulnerability to the values of amplitude and frequency of the assigned excitation corroborated by the dynamic identification results. In addition, numerical analyses have been done to highlight the effects of the friction coefficient and of the blocks geometries on the dynamics, in particular on the collapse modes. Finally, a study of the tower stability against seismic excitations has been addressed and 3D simulations have been performed with a real earthquake

    iconic crumbling of the clock tower in amatrice after 2016 central italy seismic sequence advanced numerical insight

    Get PDF
    Abstract The present paper investigates from an advanced numerical point of view the progressive damage of the Amatrice (Rieti, Italy) civic clock tower, after a long sequence of strong earthquakes that struck central Italy in 2016. Two advanced numerical models are here utilised to have an insight into the modalities of progressive damage and the behaviour of the structure under strong non-linear dynamic excitations, namely a Non-Smooth Contact Dynamics (NSCD) and a FE Concrete Damage Plasticity (CDP) models. In both cases, a full 3D detailed discretization is adopted. From the numerical results, both the role played by the actual geometries and the insufficient resistance of the constituent materials are envisaged, showing a good match with actual crack patterns observed after the seismic sequence

    Maxillary arch development with Invisalign system: Analysis of expansion dental movements on digital dental casts

    Get PDF
    Objectives: To evaluate tooth movements during maxillary arch expansion with clear aligner treatment.Materials and Methods: The study group included 28 subjects (16 females, 12 males, mean age 31.9 +/- 5.4 years) collected prospectively from January 2018 to May 2019. Inclusion criteria were European ancestry, posterior transverse discrepancy of 3-6 mm, permanent dentition stage, presence of second permanent molars, mild or moderate crowding, and good compliance with aligners. Treatment protocol included nonextraction strategies, application of Invisalign clear aligner system, and no auxiliaries other than Invisalign attachments. Linear and angular measurements were performed before treatment (T1), at the end of treatment (T2), and on final virtual models (T2 ClinCheck). A paired t-test was used to compare T2-T1 and T2-T2 ClinCheck changes. The level of significance was set at 5%.Results: Statistically significant differences were found for all measurements, except for ones at the upper second molars. The greatest increase in maxillary width was detected at the upper first and second premolars: 13.5 mm for the first premolar and 13.8 mm for the second premolar at T2. Comparison of T2-T1 angular outcomes showed statistically significant changes in the inclinations of all teeth except for the second permanent molars. T2-T2 ClinCheck showed significant differences for both linear and angular measurements for maxillary canines, resulting in poor predictability.Conclusions: Maxillary arch development revealed a progressive reduction of the expansion rate and buccal tipping in the anterior, lateral, and posterior regions, with the greatest net increase at the first and second premolars. Clinical attention should be paid to maxillary canine movements, and overcorrection should be planned for them during dentoalveolar expansion

    Evaluation of Plant and Fungal Extracts for Their Potential Antigingivitis and Anticaries Activity

    Get PDF
    The link between diet and health has lead to the promotion of functional foods which can enhance health. In this study, the oral health benefits of a number of food homogenates and high molecular mass and low molecular mass fractions were investigated. A comprehensive range of assays were performed to assess the action of these foods on the development of gingivitis and caries using bacterial species associated with these diseases. Both antigingivitis and anticaries effects were investigated by assays examining the prevention of biofilm formation and coaggregation, disruption of preexisting biofilms, and the foods' antibacterial effects. Assays investigating interactions with gingival epithelial cells and cytokine production were carried out to assess the foods' anti- gingivitis properties. Anti-caries properties such as interactions with hydroxyapatite, disruption of signal transduction, and the inhibition of acid production were investigated. The mushroom and chicory homogenates and low molecular mass fractions show promise as anti-caries and anti-gingivitis agents, and further testing and clinical trials will need to be performed to evaluate their true effectiveness in humans

    Characterization and Evolution of microRNA Genes Derived from Repetitive Elements and Duplication Events in Plants

    Get PDF
    MicroRNAs (miRNAs) are a major class of small non-coding RNAs that act as negative regulators at the post-transcriptional level in animals and plants. In this study, all known miRNAs in four plant species (Arabidopsis thaliana, Populus trichocarpa, Oryza sativa and Sorghum bicolor) have been analyzed, using a combination of computational and comparative genomic approaches, to systematically identify and characterize the miRNAs that were derived from repetitive elements and duplication events. The study provides a complete mapping, at the genome scale, of all the miRNAs found on repetitive elements in the four test plant species. Significant differences between repetitive element-related miRNAs and non-repeat-derived miRNAs were observed for many characteristics, including their location in protein-coding and intergenic regions in genomes, their conservation in plant species, sequence length of their hairpin precursors, base composition of their hairpin precursors and the minimum free energy of their hairpin structures. Further analysis showed that a considerable number of miRNA families in the four test plant species arose from either tandem duplication events, segmental duplication events or a combination of the two. However, comparative analysis suggested that the contribution made by these two duplication events differed greatly between the perennial tree species tested and the other three annual species. The expansion of miRNA families in A. thaliana, O. sativa and S. bicolor are more likely to occur as a result of tandem duplication events than from segmental duplications. In contrast, genomic segmental duplications contributed significantly more to the expansion of miRNA families in P. trichocarpa than did tandem duplication events. Taken together, this study has successfully characterized miRNAs derived from repetitive elements and duplication events at the genome scale and provides comprehensive knowledge and deeper insight into the origins and evolution of miRNAs in plants

    A non-canonical RNA silencing pathway promotes mRNA degradation in basal fungi

    Get PDF
    The increasing knowledge on the functional relevance of endogenous small RNAs (esRNAs) as riboregulators has stimulated the identification and characterization of these molecules in numerous eukaryotes. In the basal fungus Mucor circinelloides, an emerging opportunistic human pathogen, esRNAs that regulate the expression of many protein coding genes have been described. These esRNAs share common machinery for their biogenesis consisting of an RNase III endonuclease Dicer, a single Argonaute protein and two RNA-dependent RNA polymerases. We show in this study that, besides participating in this canonical dicer-dependent RNA interference (RNAi) pathway, the rdrp genes are involved in a novel dicer-independent degradation process of endogenous mRNAs. The analysis of esRNAs accumulated in wild type and silencing mutants demonstrates that this new rdrp-dependent dicer-independent regulatory pathway, which does not produce sRNA molecules of discrete sizes, controls the expression of target genes promoting the specific degradation of mRNAs by a previously unknown RNase. This pathway mainly regulates conserved genes involved in metabolism and cellular processes and signaling, such as those required for heme biosynthesis, and controls responses to specific environmental signals. Searching the Mucor genome for candidate RNases to participate in this pathway, and functional analysis of the corresponding knockout mutants, identified a new protein, R3B2. This RNase III-like protein presents unique domain architecture, it is specifically found in basal fungi and, besides its relevant role in the rdrp-dependent dicer-independent pathway, it is also involved in the canonical dicer-dependent RNAi pathway, highlighting its crucial role in the biogenesis and function of regulatory esRNAs. The involvement of RdRPs in RNA degradation could represent the first evolutionary step towards the development of an RNAi mechanism and constitutes a genetic link between mRNA degradation and post-transcriptional gene silencing

    WAO consensus on definition of food allergy severity (DEFASE)

    Get PDF
    Background: While several scoring systems for the severity of anaphylactic reactions have been developed, there is a lack of consensus on definition and categorisation of severity of food allergy disease as a whole. Aim: To develop an international consensus on the severity of food allergy (DEfinition of Food Allergy Severity, DEFASE) scoring system, to be used globally. Methods phase 1: We conducted a mixed-method systematic review (SR) of 11 databases for published and unpublished literature on severity of food allergy management and set up a panel of international experts. Phase 2: Based on our findings in Phase 1, we drafted statements for a two-round modified electronic Delphi (e-Delphi) survey. A purposefully selected multidisciplinary international expert panel on food allergy (n = 60) was identified and sent a structured questionnaire, including a set of statements on different domains of food allergy severity related to symptoms, health-related quality of life, and economic impact. Participants were asked to score their agreement on each statement on a 5-point Likert scale ranging from "strongly agree" to "strongly disagree". Median scores and percentage agreements were calculated. Consensus was defined a priori as being achieved if 70% or more of panel members rated a statement as "strongly agree" to "agree" after the second round. Based on feedback, 2 additional online voting rounds were conducted. Results: We received responses from 92% of Delphi panel members in round 1 and 85% in round 2. Consensus was achieved on the overall score and in all of the 5 specific key domains as essential components of the DEFASE score. Conclusions: The DEFASE score is the first comprehensive grading of food allergy severity that considers not only the severity of a single reaction, but the whole disease spectrum. An international consensus has been achieved regarding a scoring system for food allergy disease. It offers an evaluation grid, which may help to rate the severity of food allergy. Phase 3 will involve validating the scoring system in research settings, and implementing it in clinical practice
    corecore