2,012 research outputs found

    A general approach to quantum dynamics using a variational master equation: Application to phonon-damped Rabi rotations in quantum dots

    Full text link
    We develop a versatile master equation approach to describe the non-equilibrium dynamics of a two-level system in contact with a bosonic environment, which allows for the exploration of a wide range of parameter regimes within a single formalism. As an experimentally relevant example, we apply this technique to the study of excitonic Rabi rotations in a driven quantum dot, and compare its predictions to the numerical Feynman integral approach. We find excellent agreement between the two methods across a generally difficult range of parameters. In particular, the variational master equation technique captures effects usually considered to be non-perturbative, such as multi-phonon processes and bath-induced driving renormalisation, and can give reliable results even in regimes in which previous master equation approaches fail.Comment: 5 pages, 2 figures. Published version, revised title, minor changes to the tex

    Playing popular science

    Get PDF
    Popular science is a critical form of science communication and dissemination. While scientific journals and detailed textbooks are well suited to dissemination of detailed theories and findings within academic communities, there is a definitive need to inform the general public of key scientific concepts and challenges. Indeed, this is increasingly seen as a central part of any research project or funding bid: in the United Kingdom, the Research Councils stipulate a need to consider public engagement and outreach in research proposals For scientists, the popular science book has long been a medium of choice, primarily because they already have a great deal of experience in writing. But in recent years scientific researchers have been increasingly engaged with other forms of popular science communication, including radio and television broadcasting. Early careers researchers are now provided with training in these areas, including guidance on how to develop programme proposals and how to write, present, direct, and edit materials for print, the airwaves, and screen. In effect, today’s scientists are expected to engage directly with popular science journalism not merely as scientific advisors, but as the writers, directors, and broadcasters.This event involved an exhibition and discussion of four popular science games, co-designed by scientific experts and designed and developed by students at Abertay University. The four games were: (1) Namaka by Crowbar Games Co-designed by Ecotoxicologist Dr Brian Quinn (2) Tides: A Shark Tale by Benthos Games Co-designed by Immunologist and sharks expert Dr Helen Dooley (3) Orbs by Quantessential Games Co-designed by Quantum Physicist Dr Erik Gauger (4) Cell Cycle by Type 3 Games Co-designed by Cell Biologist and cancer researcher Dr Adrian Sauri

    The type of adjuvant in whole inactivated influenza a virus vaccines impacts vaccine-associated enhanced respiratory disease

    Get PDF
    Influenza A virus (IAV) causes a disease burden in the swine industry in the US and is a challenge to prevent due to substantial genetic and antigenic diversity of IAV that circulate in pig populations. Whole inactivated virus (WIV) vaccines formulated with oil-in-water (OW) adjuvant are commonly used in swine. However, WIV-OW are associated with vaccine-associated enhanced respiratory disease (VAERD) when the hemagglutinin and neuraminidase of the vaccine strain are mismatched with the challenge virus. Here, we assessed if different types of adjuvant in WIV vaccine formulations impacted VAERD outcome. WIV vaccines with a swine δ1-H1N2 were formulated with different commercial adjuvants: OW1, OW2, nano-emulsion squalene-based (NE) and gel polymer (GP). Pigs were vaccinated twice by the intramuscular route, 3 weeks apart, then challenged with an H1N1pdm09 three weeks post-boost and necropsied at 5 days post infection. All WIV vaccines elicited antibodies detected using the hemagglutination inhibition (HI) assay against the homologous vaccine virus, but not against the heterologous challenge virus; in contrast, all vaccinated groups had cross-reactive IgG antibody and IFN-γ responses against H1N1pdm09, with a higher magnitude observed in OW groups. Both OW groups demonstrated robust homologous HI titers and cross-reactivity against heterologous H1 viruses in the same genetic lineage. However, both OW groups had severe immunopathology consistent with VAERD after challenge when compared to NE, GP, and non-vaccinated challenge controls. None of the WIV formulations protected pigs from heterologous virus replication in the lungs or nasal cavity. Thus, although the type of adjuvant in the WIV formulation played a significant role in the magnitude of immune response to homologous and antigenically similar H1, none tested here increased the breadth of protection against the antigenically-distinct challenge virus, and some impacted immunopathology after challenge

    Superabsorption of light via quantum engineering

    Get PDF
    Almost 60 years ago Dicke introduced the term superradiance to describe a signature quantum effect: N atoms can collectively emit light at a rate proportional to N^2. Even for moderate N this represents a significant increase over the prediction of classical physics, and the effect has found applications ranging from probing exciton delocalisation in biological systems, to developing a new class of laser, and even in astrophysics. Structures that super-radiate must also have enhanced absorption, but the former always dominates in natural systems. Here we show that modern quantum control techniques can overcome this restriction. Our theory establishes that superabsorption can be achieved and sustained in certain simple nanostructures, by trapping the system in a highly excited state while extracting energy into a non-radiative channel. The effect offers the prospect of a new class of quantum nanotechnology, capable of absorbing light many times faster than is currently possible; potential applications of this effect include light harvesting and photon detection. An array of quantum dots or a porphyrin ring could provide an implementation to demonstrate this effect

    Phonon-Induced Rabi-Frequency Renormalization of Optically Driven Single InGaAs/GaAs Quantum Dots

    Get PDF
    The authors thank the EPSRC (U.K.) EP/G001642, and the QIPIRC U.K. for financial support. A. N. is supported by the EPSRC and B.W. L. by the Royal Society.We study optically driven Rabi rotations of a quantum dot exciton transition between 5 and 50 K, and for pulse areas of up to 14 pi. In a high driving field regime, the decay of the Rabi rotations is nonmonotonic, and the period decreases with pulse area and increases with temperature. By comparing the experiments to a weak-coupling model of the exciton-phonon interaction, we demonstrate that the observed renormalization of the Rabi frequency is induced by fluctuations in the bath of longitudinal acoustic phonons, an effect that is a phonon analogy of the Lamb shift.Peer reviewe

    Fundamental Limits to Coherent Photon Generation with Solid-State Atomlike Transitions

    Full text link
    Coherent generation of indistinguishable single photons is crucial for many quantum communication and processing protocols. Solid-state realizations of two-level atomic transitions or three-level spin-Λ\Lambda systems offer significant advantages over their atomic counterparts for this purpose, albeit decoherence can arise due to environmental couplings. One popular approach to mitigate dephasing is to operate in the weak excitation limit, where excited state population is minimal and coherently scattered photons dominate over incoherent emission. Here we probe the coherence of photons produced using two-level and spin-Λ\Lambda solid-state systems. We observe that the coupling of the atomic-like transitions to the vibronic transitions of the crystal lattice is independent of driving strength and detuning. We apply a polaron master equation to capture the non-Markovian dynamics of the ground state vibrational manifolds. These results provide insight into the fundamental limitations for photon coherence from solid-state quantum emitters, with the consequence that deterministic single-shot quantum protocols are impossible and inherently probabilistic approaches must be embraced.Comment: 16 pages [with supplementary information], 8 figure

    Wave reflection, assessed by use of the ARCSolver Algorithm for pulse wave separation, is reduced under acute µg conditions in parabolic flight

    Get PDF
    Weightlessness during long-term space flight over 6-12 months leads to complex individual cardiovascular adaptation. The initial central blood volume expansion followed by a loss of plasma volume is accompanied by changes in vascular mechanoreceptor loads and responsive-ness, altered autonomic reflex control of heart rate and blood pressure, and hormonal changes in the long run. Hence, function and structure of the heart and blood vessels may change. Hemodynamic data obtained during short- and long-term space flight may indicate that the adaptation process resembles ageing of the cardiovascular system characterized by decreased diastolic blood pressure, increased central sympathetic nerve traffic and increased arterial pulse wave velocity. Experiments during parabolic flights in supine position suggest, that stroke volume does not change during transitions between µ-g and 1-g. We tested a novel method of pulse wave separation based on simple oscillometric brachial cuff waveform reading to investigate pulse wave reflection during acute weightlessness in healthy subjects. We hypothesized that the wave reflection magnitude (RM) remains unaltered during parabolic flights in supine position

    Screening nuclear field fluctuations in quantum dots for indistinguishable photon generation

    Get PDF
    A semiconductor quantum dot can generate highly coherent and indistinguishable single photons. However, intrinsic semiconductor dephasing mechanisms can reduce the visibility of two-photon interference. For an electron in a quantum dot, a fundamental dephasing process is the hyperfine interaction with the nuclear spin bath. Here we directly probe the consequence of the fluctuating nuclear spins on the elastic and inelastic scattered photon spectra from a resident electron in a single dot. We find the nuclear spin fluctuations lead to detuned Raman scattered photons which are distinguishable from both the elastic and incoherent components of the resonance fluorescence. This significantly reduces two-photon interference visibility. However, we demonstrate successful screening of the nuclear spin noise which enables the generation of coherent single photons that exhibit high visibility two-photon interference.Comment: 5 pages, 4 figures + Supplementary Informatio

    Mice Deficient in SFRP1 Exhibit Increased Adiposity, Dysregulated Glucose Metabolism

    Get PDF
    The molecular mechanisms involved in the development of obesity and related complications remain unclear. Wnt signaling plays an important role in preadipocyte differentiation and adipogenesis. The expression of a Wnt antagonist, secreted frizzled related protein 1 (SFRP1), is increased in response to initial weight gain, then levels are reduced under conditions of extreme obesity in both humans and animals. Here we report that loss of Sfrp1 exacerbates weight gain and glucose homeostasis in mice in response to diet induced obesity (DIO). Sfrp1-/- mice fed a high fat diet (HFD) exhibited an increase in body mass accompanied by increases in body fat percentage, visceral WAT mass, and adipocyte size. Fasting glucose levels are elevated, glucose clearance is impaired, hepatic gluconeogenesis regulators are aberrantly upregulated, and glucose transporters are repressed in Sfrp1-/- mice fed a HFD. Additionally, we observed increased steatosis in the livers of Sfrp1-/- mice. Our findings demonstrate that the expression of Sfrp1 is a critical factor required for maintaining appropriate cellular signaling in response to the onset of obesity

    Coherent state transfer between an electron- and nuclear spin in 15N@C60

    Get PDF
    Electron spin qubits in molecular systems offer high reproducibility and the ability to self assemble into larger architectures. However, interactions between neighbouring qubits are 'always-on' and although the electron spin coherence times can be several hundred microseconds, these are still much shorter than typical times for nuclear spins. Here we implement an electron-nuclear hybrid scheme which uses coherent transfer between electron and nuclear spin degrees of freedom in order to both controllably turn on/off dipolar interactions between neighbouring spins and benefit from the long nuclear spin decoherence times (T2n). We transfer qubit states between the electron and 15N nuclear spin in 15N@C60 with a two-way process fidelity of 88%, using a series of tuned microwave and radiofrequency pulses and measure a nuclear spin coherence lifetime of over 100 ms.Comment: 5 pages, 3 figures with supplementary material (8 pages
    • …
    corecore