3,606 research outputs found

    A very low current scanning tunneling microscope

    Get PDF
    The applications of the scanning tunneling microscope (STM) in air are usually restricted to good conducting materials as clean metals, doped and passivated semiconductors, or to some molecular adsorbates deposited onto graphite. In order to study poor conducting materials as biological molecules, we have built a very low current STM. This instrument can routinely be operated at 0.1 pA while having a bandwidth of 7 kHz. The advantages of using very low currents are illustrated by imaging 5-nm-thick purple membranes. These membranes can only be imaged at currents smaller than 2 pA. © 1995 American Institute of Physics.DGICYT Nº.PB94-0016 .Peer Reviewe

    Generation of a human iPS cell line from a patient with retinitis pigmentosa due to EYS mutation

    Get PDF
    Retinitis pigmentosa (RP) is an inherited retinal degenerative disease. Mutations in EYS have been associated with autosomal recessive RP. The human iPS cell line, CABi002-A, derived from peripheral blood mononuclear cells from a patient carrying a heterozygous double mutation in EYS gene was generated by non-integrative reprogramming technology, using hOCT3/4, hSOX2, hc-MYC and hKLF4 reprogramming factors. Pluripotency and differentiation capacity were assessed by immunocytochemistry and RT-PCR. This iPSC line can be further differentiated towards the affected cells to understand the pathophysiology of the disease and test new therapeutic strategies.Cellex FoundationFundación Progreso y Salu

    Formación en Cinemática y Dinámica de Sistemas Multicuerpo Mediante Coordenadas Naturales

    Full text link
    La formación de los futuros ingenieros mecánicos en dinámica de sistemas multicuerpo 3-D rara vez encuentra una materia específica en los planes de estudio, ni siquiera en postgrado. Cuando sólo se dispone de algunas horas (entre 5 y 10 horas de clase y unas 15 de trabajo personal) en el marco de una materia más general, las coordenadas naturales y Matlab son probablemente el único camino para alcanzar ciertos objetivos prácticos. Aquí se aborda cómo se pueden alcanzar estos objetivos, con un aprendizaje basado en .casos reales. Very often, the curriculum of mechanical engineers doesn't include any specific subject on kinematics and dynamics of multibody systems. In these situations the unique opportunity to introduce MBS is to dedicate from 5 to 10 hours to this subject inside a more general course, plus about 15 hours of personal work. This paper shows how this short time can be enough if natural coordinates are used. Keywords

    Multiatom resonant photoemission: Theory and systematics

    Get PDF
    A first-principles calculation of the recently discovered interatomic multiatom resonant photoemission (MARPE) effect is presented. In this phenomenon, core photoelectron intensities are enhanced when the photon energy is tuned to a core-level absorption edge of nonidentical neighboring atoms, thus enabling direct determination of near-neighbor atomic identities. Both the multiatom character of MARPE and retardation effects in the photon and electron interactions in the resonant channel are shown to be crucial. Measured peak-intensity enhancements of 40% in MnO and spectral shapes similar to the corresponding x-ray absorption profiles are well reproduced by this theory.This work was supported by the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098, the University of the Basque Country, and the Spanish Ministerio de Educación y Cultura (Fulbright Grant No. FU-98-22726216).Peer reviewe

    Energy conditions in modified Gauss-Bonnet gravity

    Get PDF
    In considering alternative higher-order gravity theories, one is liable to be motivated in pursuing models consistent and inspired by several candidates of a fundamental theory of quantum gravity. Indeed, motivations from string/M-theory predict that scalar field couplings with the Gauss-Bonnet invariant, G, are important in the appearance of non-singular early time cosmologies. In this work, we discuss the viability of an interesting alternative gravitational theory, namely, modified Gauss-Bonnet gravity or f(G) gravity. We consider specific realistic forms of f(G) analyzed in the literature that account for the late-time cosmic acceleration and that have been found to cure the finite-time future singularities present in the dark energy models. We present the general inequalities imposed by the energy conditions and use the recent estimated values of the Hubble, deceleration, jerk and snap parameters to examine the viability of the above-mentioned forms of f(G) imposed by the weak energy condition.Comment: 9 pages, 8 figures. V2: minor additions and corrections; to appear in PR

    Ultrafast nonlinear optical response of Dirac fermions in graphene

    Get PDF
    The speed of solid-state electronic devices, determined by the temporal dynamics of charge carriers, could potentially reach unprecedented petahertz frequencies through direct manipulation by optical fields, consisting in a million-fold increase from state-of-the-art technology. In graphene, charge carrier manipulation is facilitated by exceptionally strong coupling to optical fields, from which stems an important back-action of photoexcited carriers. Here we investigate the instantaneous response of graphene to ultrafast optical fields, elucidating the role of hot carriers on sub-100 fs timescales. The measured nonlinear response and its dependence on interaction time and field polarization reveal the back-action of hot carriers over timescales commensurate with the optical field. An intuitive picture is given for the carrier trajectories in response to the optical-field polarization state. We note that the peculiar interplay between optical fields and charge carriers in graphene may also apply to surface states in topological insulators with similar Dirac cone dispersion relations.Peer ReviewedPostprint (published version

    Enhanced microwave transmission through quasicrystal hole arrays

    Get PDF
    The authors report on the observation of enhanced microwave transmission through quasiperiodic hole arrays in metal films. The fraction of transmitted light reaches 50% in a self-standing metal film and approaches 90% when the film is sandwiched between thin dielectric slabs, while the holes occupy only 10% of the sample area. The maximum transmission exhibits a Breit-Wigner resonance behavior, accompanied by zero phase change and rendering the film almost invisible over a wide frequency range. The extraordinary transmission phenomenon is interpreted in terms of resonances in the self-consistent interaction between holes, which are represented by effective electric and magnetic dipoles. © 2007 American Institute of Physics.Peer Reviewe

    Development of Surface-Coated Polylactic Acid/Polyhydroxyalkanoate (PLA/PHA) Nanocomposites

    Get PDF
    This work reports on the design and development of nanocomposites based on a polymeric matrix containing biodegradable Polylactic Acid (PLA) and Polyhydroxyalkanoate (PHA) coated with either Graphite NanoPlatelets (GNP) or silver nanoparticles (AgNP). Nanocomposites were obtained by mechanical mixing under mild conditions and low load contents (<0.10 wt %). This favours physical adhesion of the additives onto the polymer surface, while the polymeric bulk matrix remains unaffected. Nanocomposite characterisation was performed via optical and focused ion beam microscopy, proving these nanocomposites are selectively modified only on the surface, leaving bulk polymer unaffected. Processability of these materials was proven by the fabrication of samples via injection moulding and mechanical characterisation. Nanocomposites showed enhanced Young modulus and yield strength, as well as better thermal properties when compared with the unmodified polymer. In the case of AgNP coated nanocomposites, the surface was found to be optically active, as observed in the increase of the resolution of Raman spectra, acquired at least 10 times, proving these nanocomposites are promising candidates as surface enhanced Raman spectroscopy (SERS) substrates
    corecore