1,121 research outputs found
Non-Compositional Term Dependence for Information Retrieval
Modelling term dependence in IR aims to identify co-occurring terms that are
too heavily dependent on each other to be treated as a bag of words, and to
adapt the indexing and ranking accordingly. Dependent terms are predominantly
identified using lexical frequency statistics, assuming that (a) if terms
co-occur often enough in some corpus, they are semantically dependent; (b) the
more often they co-occur, the more semantically dependent they are. This
assumption is not always correct: the frequency of co-occurring terms can be
separate from the strength of their semantic dependence. E.g. "red tape" might
be overall less frequent than "tape measure" in some corpus, but this does not
mean that "red"+"tape" are less dependent than "tape"+"measure". This is
especially the case for non-compositional phrases, i.e. phrases whose meaning
cannot be composed from the individual meanings of their terms (such as the
phrase "red tape" meaning bureaucracy). Motivated by this lack of distinction
between the frequency and strength of term dependence in IR, we present a
principled approach for handling term dependence in queries, using both lexical
frequency and semantic evidence. We focus on non-compositional phrases,
extending a recent unsupervised model for their detection [21] to IR. Our
approach, integrated into ranking using Markov Random Fields [31], yields
effectiveness gains over competitive TREC baselines, showing that there is
still room for improvement in the very well-studied area of term dependence in
IR
The Research Unit VolImpact: Revisiting the volcanic impact on atmosphere and climate â preparations for the next big volcanic eruption
This paper provides an overview of the scientific background and the research objectives of the Research Unit âVolImpactâ (Revisiting the volcanic impact on atmosphere and climate â preparations for the next big volcanic eruption, FOR 2820). VolImpact was recently funded by the Deutsche Forschungsgemeinschaft (DFG) and started in spring 2019. The main goal of the research unit is to improve our understanding of how the climate system responds to volcanic eruptions. Such an ambitious program is well beyond the capabilities of a single research group, as it requires expertise from complementary disciplines including aerosol microphysical modelling, cloud physics, climate modelling, global observations of trace gas species, clouds and stratospheric aerosols. The research goals will be achieved by building on important recent advances in modelling and measurement capabilities. Examples of the advances in the observations include the now daily near-global observations of multi-spectral aerosol extinction from the limb-scatter instruments OSIRIS, SCIAMACHY and OMPS-LP. In addition, the recently launched SAGE III/ISS and upcoming satellite missions EarthCARE and ALTIUS will provide high resolution observations of aerosols and clouds. Recent improvements in modeling capabilities within the framework of the ICON model family now enable simulations at spatial resolutions fine enough to investigate details of the evolution and dynamics of the volcanic eruptive plume using the large-eddy resolving version, up to volcanic impacts on larger-scale circulation systems in the general circulation model version. When combined with state-of-the-art aerosol and cloud microphysical models, these approaches offer the opportunity to link eruptions directly to their climate forcing. These advances will be exploited in VolImpact to study the effects of volcanic eruptions consistently over the full range of spatial and temporal scales involved, addressing the initial development of explosive eruption plumes (project VolPlume), the variation of stratospheric aerosol particle size and radiative forcing caused by volcanic eruptions (VolARC), the response of clouds (VolCloud), the effects of volcanic eruptions on atmospheric dynamics (VolDyn), as well as their climate impact (VolClim)
Benefits and risks of barefoot harness racing in Standardbred trotters
There is a lack of research on the benefits and risks of shoeing conditions in harness racing. Thus, our objectives were to: (a) investigate whether velocity times (VT; s/km) are affected by racing unshod (N = 76,932 records on 5,247 horses); (b) determine the potential risks of galloping, being penalized, and disqualification when competing unshod (N = 111,755 records on 6,423 horses); and (c) identify additional environmental factors that affect VT and risks. VT was found to be significantly influenced by shoeing condition (e.g., unshod, shod front, shod hind, or fully shod), but also by sex, age, season, track, track condition, start method, start position, distance, and driver-horse performance level (p < 2e-16). The risks of galloping and disqualification were significantly influenced by shoeing condition, sex, age, season, track, start method, start position, or driver-horse performance level (p =.05). Horses racing unshod had 0.7 s/km lower VT than fully shod horses and showed better performance when racing on neutral tracks during the late summer than horses with other shoeing conditions during the same period. However, racing unshod increased the relative risks of galloping and disqualification by 15%-35% in all seasons. Horses shod only on the hind hooves showed better performance than fully shod horses, without higher risks associated with competing unshod
On two problems in graph Ramsey theory
We study two classical problems in graph Ramsey theory, that of determining
the Ramsey number of bounded-degree graphs and that of estimating the induced
Ramsey number for a graph with a given number of vertices.
The Ramsey number r(H) of a graph H is the least positive integer N such that
every two-coloring of the edges of the complete graph contains a
monochromatic copy of H. A famous result of Chv\'atal, R\"{o}dl, Szemer\'edi
and Trotter states that there exists a constant c(\Delta) such that r(H) \leq
c(\Delta) n for every graph H with n vertices and maximum degree \Delta. The
important open question is to determine the constant c(\Delta). The best
results, both due to Graham, R\"{o}dl and Ruci\'nski, state that there are
constants c and c' such that 2^{c' \Delta} \leq c(\Delta) \leq 2^{c \Delta
\log^2 \Delta}. We improve this upper bound, showing that there is a constant c
for which c(\Delta) \leq 2^{c \Delta \log \Delta}.
The induced Ramsey number r_{ind}(H) of a graph H is the least positive
integer N for which there exists a graph G on N vertices such that every
two-coloring of the edges of G contains an induced monochromatic copy of H.
Erd\H{o}s conjectured the existence of a constant c such that, for any graph H
on n vertices, r_{ind}(H) \leq 2^{c n}. We move a step closer to proving this
conjecture, showing that r_{ind} (H) \leq 2^{c n \log n}. This improves upon an
earlier result of Kohayakawa, Pr\"{o}mel and R\"{o}dl by a factor of \log n in
the exponent.Comment: 18 page
Evaluational adjectives
This paper demarcates a theoretically interesting class of "evaluational adjectives." This class includes predicates expressing various kinds of normative and epistemic evaluation, such as predicates of personal taste, aesthetic adjectives, moral adjectives, and epistemic adjectives, among others. Evaluational adjectives are distinguished, empirically, in exhibiting phenomena such as discourse-oriented use, felicitous embedding under the attitude verb `find', and sorites-susceptibility in the comparative form. A unified degree-based semantics is developed: What distinguishes evaluational adjectives, semantically, is that they denote context-dependent measure functions ("evaluational perspectives")âcontext-dependent mappings to degrees of taste, beauty, probability, etc., depending on the adjective. This perspective-sensitivity characterizing the class of evaluational adjectives cannot be assimilated to vagueness, sensitivity to an experiencer argument, or multidimensionality; and it cannot be demarcated in terms of pretheoretic notions of subjectivity, common in the literature. I propose that certain diagnostics for "subjective" expressions be analyzed instead in terms of a precisely specified kind of discourse-oriented use of context-sensitive language. I close by applying the account to `find x PRED' ascriptions
Twenty-four Hour Holter Monitoring in Finishing Cattle Housed Outdoors
Ambulatory electrocardiogram monitoring, in the form of Holter monitoring, has been used in human and veterinary medicine for decades as an aid in the diagnosis and determination of appropriate therapy of heart rhythm disturbances. Within veterinary medicine, Holter monitors have been primarily used in companion animal species, yet little attention has been given to food animal species. Moreover, the heart rhythm in clinically normal cattle fed high concentrate diets and housed outdoors in confined drylot facilities has not been previously reported. In order to properly identify pathologic arrhythmias in cattle, the normal rhythm and arrhythmia prevalence in healthy cattle should be defined. Most prior reports of arrhythmia in cattle have been recordings of relatively shorter duration and in animals that were hospitalized or being handled for various reasons. Therefore, the objective of this study was to determine normal Holter monitor registrations including heart rate, rhythm, number of ventricular premature complexes, and atrial premature complexes in unrestrained finishing Angus steers
Networks uncover hidden lexical borrowing in Indo-European language evolution
Language evolution is traditionally described in terms of family trees with ancestral languages splitting into descendent languages. However, it has long been recognized that language evolution also entails horizontal components, most commonly through lexical borrowing. For example, the English language was heavily influenced by Old Norse and Old French; eight per cent of its basic vocabulary is borrowed. Borrowing is a distinctly non-tree-like processâakin to horizontal gene transfer in genome evolutionâthat cannot be recovered by phylogenetic trees. Here, we infer the frequency of hidden borrowing among 2346 cognates (etymologically related words) of basic vocabulary distributed across 84 Indo-European languages. The dataset includes 124 (5%) known borrowings. Applying the uniformitarian principle to inventory dynamics in past and present basic vocabularies, we find that 1373 (61%) of the cognates have been affected by borrowing during their history. Our approach correctly identified 117 (94%) known borrowings. Reconstructed phylogenetic networks that capture both vertical and horizontal components of evolutionary history reveal that, on average, eight per cent of the words of basic vocabulary in each Indo-European language were involved in borrowing during evolution. Basic vocabulary is often assumed to be relatively resistant to borrowing. Our results indicate that the impact of borrowing is far more widespread than previously thought
The descriptive content of names as predicate modifiers
In this paper I argue that descriptive content associated with a proper name can serve as a truth-conditionally relevant adjunct and be an additional contribution of the name to the truth-conditions. Definite descriptions the so-and-so associated by speakers with a proper name can be used as qualifying prepositional phrases as so-and-so, so sentences containing a proper name NN is doing something could be understood as NN is doing something as NN (which means as so-and-so). Used as an adjunct, the descriptive content of a proper name expresses the additional circumstances of an action (a manner, reason, goal, time or purpose) and constitute a part of a predicate. I argue that qualifying prepositional phrases should be analyzed as predicate modifiers and propose a formal representation of modified predicates. The additional truth-conditional relevance of the descriptive content of a proper name helps to explain the phenomenon of the substitution failure of coreferential names in simple sentences
Beam lifetimes and ionization cross sections of U
Beam lifetimes of stored U^{28+} ions with energies between 10 and 180ââMeV/u were measured in the heavy ion synchrotron SIS18 and in the experimental storage ring (ESR) of the GSI accelerator facility. By using the internal gas jet target of the ESR, it was possible to obtain projectile ionization cross sections for collisions with H_{2} and N_{2} from the lifetime data. The experimental cross sections are compared to theoretical data predicted by the n-body classical-trajectory Monte Carlo (CTMC) method of Olson et al. and to calculations of Shevelko et al. using the LOSS-R code. In addition, both theoretical approaches are probed by using the resulting cross sections as input parameters for the STRAHLSIM code, which models the beam losses and, consequently, the lifetimes in the heavy ion synchrotron SIS18. Both the cross section measurement and the SIS18 lifetime study indicate that the LOSS-R code cross sections are in better agreement with the experimental results than the n-body CTMC calculations
- âŚ