72 research outputs found

    Identification, cloning and characterization of a novel 47 kDa murine PKA C subunit homologous to human and bovine Cβ2

    Get PDF
    BACKGROUND: Two main genes encoding the catalytic subunits Cα and Cβ of cyclic AMP dependent protein kinase (PKA) have been identified in all vertebrates examined. The murine, bovine and human Cβ genes encode several splice variants, including the splice variant Cβ2. In mouse Cβ2 has a relative molecular mass of 38 kDa and is only expressed in the brain. In human and bovine Cβ2 has a relative molecular mass of 47 kDa and is mainly expressed in lymphoid tissues. RESULTS: We identified a novel 47 kDa splice variant encoded by the mouse Cβ gene that is highly expressed in lymphoid cells. Cloning, expression, and production of a sequence-specific antiserum and characterization of PKA catalytic subunit activities demonstrated the 47 kDa protein to be a catalytically active murine homologue of human and bovine Cβ2. Based on the present results and the existence of a human brain-specifically expressed Cβ splice variant designated Cβ4 that is identical to the former mouse Cβ2 splice variant, the mouse splice variant has now been renamed mouse Cβ4. CONCLUSION: Murine lymphoid tissues express a protein that is a homologue of human and bovine Cβ2. The murine Cβ gene encodes the splice variants Cβ1, Cβ2, Cβ3 and Cβ4, as is the case with the human Cβ gene

    Epidermal growth factor receptor levels are reduced in mice with targeted disruption of the protein kinase A catalytic subunit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidermal Growth Factor Receptor (EGFR) is a key target molecule in current treatment of several neoplastic diseases. Hence, in order to develop and improve current drugs targeting EGFR signalling, an accurate understanding of how this signalling pathway is regulated is required. It has recently been demonstrated that inhibition of cAMP-dependent protein kinase (PKA) induces a ligand-independent internalization of EGFR. Cyclic-AMP-dependent protein kinase consists of a regulatory dimer bound to two catalytic subunits.</p> <p>Results</p> <p>We have investigated the effect on EGFR levels after ablating the two catalytic subunits, Cα and Cβ in two different models. The first model used targeted disruption of either Cα or Cβ in mice whereas the second model used Cα and Cβ RNA interference in HeLa cells. In both models we observed a significant reduction of EGFR expression at the protein but not mRNA level.</p> <p>Conclusion</p> <p>Our results suggest that PKA may represent a target that when manipulated can maintain EGFR protein levels at the single cell level as well as in intact animals.</p

    The Unique Lipidomic Signatures of Saccharina latissima Can Be Used to Pinpoint Their Geographic Origin

    Get PDF
    The aquaculture of macroalgae for human consumption and other high-end applications is experiencing unprecedented development in European countries, with the brown algae Saccharina latissima being the flag species. However, environmental conditions in open sea culture sites are often unique, which may impact the biochemical composition of cultured macroalgae. The present study compared the elemental compositions (CHNS), fatty acid profiles, and lipidomes of S. latissima originating from three distinct locations (France, Norway, and the United Kingdom). Significant differences were found in the elemental composition, with Norwegian samples displaying twice the lipid content of the others, and significantly less protein (2.6%, while French and UK samples contained 6.3% and 9.1%, respectively). The fatty acid profiles also differed considerably, with UK samples displaying a lower content of n-3 fatty acids (21.6%), resulting in a higher n-6/n-3 ratio. Regarding the lipidomic profile, samples from France were enriched in lyso lipids, while those from Norway displayed a particular signature of phosphatidylglycerol, phosphatidylinositol, and phosphatidylcholine. Samples from the UK featured higher levels of phosphatidylethanolamine and, in general, a lower content of galactolipids. These differences highlight the influence of site-specific environmental conditions in the shaping of macroalgae biochemical phenotypes and nutritional value. It is also important to highlight that differences recorded in the lipidome of S. latissima make it possible to pinpoint specific lipid species that are likely to represent origin biomarkers. This finding is relevant for future applications in the field of geographic origin traceability and food controlpublishedVersio

    Identification and Characterization of Novel Mutations in the Human Gene Encoding the Catalytic Subunit Calpha of Protein Kinase A (PKA)

    Get PDF
    The genes PRKACA and PRKACB encode the principal catalytic (C) subunits of protein kinase A (PKA) Cα and Cβ, respectively. Cα is expressed in all eukaryotic tissues examined and studies of Cα knockout mice demonstrate a crucial role for Cα in normal physiology. We have sequenced exon 2 through 10 of PRKACA from the genome of 498 Norwegian donors and extracted information about PRKACA mutations from public databases. We identified four interesting nonsynonymous point mutations, Arg45Gln, Ser109Pro, Gly186Val, and Ser263Cys, in the Cα1 splice variant of the kinase. Cα variants harboring the different amino acid mutations were analyzed for kinase activity and regulatory (R) subunit binding. Whereas mutation of residues 45 and 263 did not alter catalytic activity or R subunit binding, mutation of Ser109 significantly reduced kinase activity while R subunit binding was unaltered. Mutation of Cα Gly186 completely abrogated kinase activity and PKA type I but not type II holoenzyme formation. Gly186 is located in the highly conserved DFG motif of Cα and mutation of this residue to Val was predicted to result in loss of binding of ATP and Mg2+, which may explain the kinetic inactivity. We hypothesize that individuals born with mutations of Ser109 or Gly186 may be faced with abnormal development and possibly severe disease

    Transient and sustained incentive effects on electrophysiological indices of cognitive control in younger and older adults

    Get PDF
    Preparing for upcoming events, separating task-relevant from task-irrelevant information and efficiently responding to stimuli all require cognitive control. The adaptive recruitment of cognitive control depends on activity in the dopaminergic reward system as well as the frontoparietal control network. In healthy aging, dopaminergic neuromodulation is reduced, resulting in altered incentive-based recruitment of control mechanisms. In the present study, younger adults (18–28 years) and healthy older adults (66–89 years) completed an incentivized flanker task that included gain, loss, and neutral trials. Event-related potentials (ERPs) were recorded at the time of incentive cue and target presentation. We examined the contingent negative variation (CNV), implicated in stimulus anticipation and response preparation, as well as the P3, which is involved in the evaluation of visual stimuli. Both younger and older adults showed transient incentive-based modulation of CNV. Critically, cue-locked and target-locked P3s were influenced by transient and sustained effects of incentives in younger adults, while such modulation was limited to a sustained effect of gain incentives on cue-P3 in older adults. Overall, these findings are in line with an age-related reduction in the flexible recruitment of preparatory and target-related cognitive control processes in the presence of motivational incentives

    DNA replication in Physarum polycephalum: characterization of DNA replication products made in vivo in the presence of cycloheximide in strains sensitive and resistant to cycloheximide.

    No full text
    Synchronous plasmodia of cycloheximide-sensitive and cycloheximide-resistant strains of Physarum polycephalum were labelled with 3[H]-deoxyadenosine in pulse and pulse-chase experiments in presence and absence of cycloheximide. The replication products were studied with alkaline sucrose gradient sedimentation analysis. We show that the action of cycloheximide on DNA replication in Physarum is mediated through the ribosome, since the ribosomally located resistance also makes the plasmodial DNA replication refractile to the action of cycloheximide. Cycloheximide caused inhibition of three stages in DNA replication in the wild type: first, the formation of primary replication units ("Okazaki" size fragments), secondly, the ligation of primary units into secondary ("Replicon" size) units and thirdly, the ligation of secondary units into mature DNA

    DNA replication in Physarum polycephalum: bidirectional replication of DNA within replicons.

    No full text
    The direction of replication of DNA within replicons of Physarum polycephalum was studied by pulse-labelling with 5-bromouracil-deoxyriboside (BrdUrd) and 3H-adenosine deoxyriboside (dAdo), followed by ultraviolet- (UV) -photolysis and analysis of molecular weights of single strand DNA fragments on alkaline sucrose gradients. Newly made DNA within replicons at all stages of completion is split in two equal halves upon UV irradiation when BrdUrd was given at the time of initiation of DNA synthesis. This shows that replication within replicons of Physarum polycephalum starts at an origin located in the center of each unit, proceeding bidirectionally from this origin

    DNA replication in Physarum polycephalum: UV photolysis of maturing 5-bromo-deoxyuridine substituted DNA.

    No full text
    Combinations of 5-bromodeoxyuridine (BrdUrd) and 3H-deoxyadenosine (3H-DAdo) short pulses were given in the synchronous DNA-replication period of Physarum polycephalum. After a chase period, UV-photolysis products were analyzed on alkaline sucrose gradients. This strategy has allowed the following conclusions. a) at the time of master-initiation of DNA replication, points separated by 1.1-2.2x10(7) daltons of single strand DNA may initiate DNA synthesis. b) among these, only selected groups of replicons actually proceed in DNA replication at this time, while others appear to hold (later temporal sets of replicons). The origins of the ones that proceed in replication are separated from each other by a distance corresponding to 1.1-2.x10(7) daltons. c) regions in actual replication are separated from each other by increasing distances (up to 1.5x10(8) daltons single strand DNA) at later times in S
    corecore